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Abstract In this paper a multi-objective algorithm to simultaneously optimize
the total number of buffers, the overall service rate, and the throughput of a
general-service finite queueing network is studied. These conflicting objectives are
optimized by means of a multi-objective genetic algorithm, designed to produce
solutions for more than one objective. Computational experiments are shown, in
order to determine the efficacy and efficiency of the approach. Instigating news
insights are given.
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1 Introduction

Our focus here is on single-server queueing networks with exponentially distributed
inter-arrival times and generally distributed service times, configured in an arbi-
trary acyclic topology (see Fig. 1). More specifically, the focus is on networks of
M/G/1/K queues, which in Kendall (1953) notation stands for Markovian ar-
rivals, Generally distributed service times, a single server, and the total capacity
of K items, including the item in service.
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Fig. 1 An M/G/1/K queueing network

Given the topology and the external arrival rates (Λ = {Λ1, Λ2, . . . , Λn}),
our goal is to obtain the maximum throughput (Θ) by means of the minimum
number of buffers (K = {K1,K2, . . . ,Kn}) and the minimum service rates (µ =
{µ1, µ2, . . . , µn}). Potential users of these queueing models include computer sci-
entists and engineers. Indeed, these models may help to understand and to improve
various real-life systems, including manufacturing (Youssef and ElMaraghy 2008),
production (Andriansyah et al 2010) and health (Osorio and Bierlaire 2009) sys-
tems, urban or pedestrian traffic (Cruz et al 2010), computer and communication
systems (Gontijo et al 2011), and web-based applications with tiered configurations
(Chaudhuri et al 2007).

There is a trade-off between the overall number of buffers, the service rates,
and the resulting throughput. Because buffers and services can be very expensive,
the overall buffer and service capacity should not be large. On the other hand,
the highest possible network throughput should be reached. Unfortunately, the
throughput is directly affected by the number of buffers allocated and the service
rates. Indeed, if the buffer and service capacity reduces there will be in general
an undesirable reduction in the throughput. In Fig. 2 it is possible to observe this
behavior , which shows Θ for a single M/G/1/K queue with cv2 = 1.5 (squared
coefficient of variation of the service time) and Λ = 1 users per time unit (external
arrival rate), as a function of several values for buffer size, K, and service rate, µ
(see Equations 4 and 10), as well as the respective contour plot.

Similar throughput behavior is also observed in a network of queues, as we
shall show shortly. Notice that the surface of the plot shown in Fig. 2 is smooth.
Also suggested is convexity. Similar results were reported for simple queueing
networks (Meester and Shanthikumar 1990). However, the top surface flatness
represents trouble for the traditional optimization algorithms. Indeed, Smith and
Cruz (2005) reported a successful optimization algorithm based on Powell method,
coupled with multiple starts to avoid premature convergence to local optima.

In this study, an optimization approach is presented to simultaneously optimize
the total number of buffers, the overall service rate, and the throughput of networks
of M/G/1/K queues. The proposed method produces a set of efficient solutions for
more than one objective in the objective function (Chankong and Haimes 1983).
With the proposed approach, the decision maker is able to evaluate the effect of
solution replacement. Moreover, the multi-objective approach also allows the user
to increase one objective (e.g., throughput) while simultaneously reducing another
objective (e.g., buffer and service rate allocation).
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Fig. 2 Behavior of a single M/G/1/K queue with an arrival rate Λ = 1 user per time unit

This paper is organized as follows. A multi-objective evolutionary algorithm
specifically developed to multi-objective optimization is presented in Sec. 2, along
with the GEM, a performance evaluation tool used to approximate the throughput.
In Sec. 3, the results of a comprehensive set of computational experiments are
presented to show the efficiency of the approach. Finally, Sec. 4 concludes this
paper with final remarks and suggestions for future research in the area.

2 Algorithms

2.1 Mathematical Programming Formulation

From a modeling point of view, the throughput maximization problem can be
defined by a mixed-integer mathematical programming formulation, in which the
total buffer and server costs are minimized and the throughput is maximized
subject to integer buffer allocations and non-negative service rates. By defining a
queueing network as a digraph G(N,A), where N is a finite set of nodes (queues)
and A is a finite set of arcs (pair of connected queues), a possible formulation is:

minimizeF (K,µ), (1)

subject to

Ki ∈ {1, 2, . . .}, ∀i ∈ N, (2)

µi ≥ 0, ∀i ∈ N, (3)

where the decision variables Ki and µi indicate the total capacity of the ser-
vice and the service rate for the ith M/G/1/K queue, respectively. The objective

functions, F (K,µ) ≡
(

f1(K), f2(µ),−f3(K,µ
)

, are the total buffer allocation,

f1(K) =
∑

∀i∈N
Ki, the overall service allocation, f2(µ) =

∑

∀i∈N
µi, and the

overall throughput, f3(K,µ) = Θ(K,µ).
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Such formulation (1)–(3) was successfully used by Cruz et al (2012). However,
notice that in the literature the throughput is commonly modeled as a constraint
that must be greater than a threshold Θτ value rather than as an objective that
must be maximized (see, Andriansyah et al (2010), for instance). The problem is
that to solve this single-objective version of the problem the throughput constraint
must be relaxed and to establish an appropriate Θτ is not a trivial task. Moreover,
often a small decrease in the throughput results in a significant reduction in the
buffer and service allocation. Such a trade-off between throughput and the num-
ber of buffers and service rates unfortunately will not be apparent in an equivalent

single-objective formulation (which usually combines the multiple-objective for-
mulation into a single-objective formulation by means of a vector of weights, ω).
Additionally the determination of vector ω is difficult and often leads to arbitrary
single-objective formulations.

In this paper, a multi-objective evolutionary algorithm (MOEA) is used in
combination with a generalized expansion method (GEM), which is a well-known
method for obtaining accurate approximations of queueing network performance
(Kerbache and Smith 1987). MOEAs are particularly suitable for multi-objective
problems and have been shown to perform well in similar multi-objective problems
of networks (e.g., see Carrano et al 2006, and references therein). The algorithms
will be presented in two parts. Initially, the performance evaluation algorithm will
be described. Then, the proposed optimization algorithm will be detailed.

2.2 Performance Evaluation - Single Queues

When the interest is on single queues (not exactly the case here), the throughput
Θ(K,µ) is:

Θ(K,µ) = λ(1− pK), (4)

where λ is the external arrival rate and pK is the called blocking probability, which
is the probability that an item finds the system full (that is, the number of items
in the systems is equal to the total capacity K). Thus, the problem of finding
Θ(K,µ) reduces to determining pK .

For the special case of pure Markovian systems (i.e., M/M/1/K queues), the
blocking probability expression may be easily found in the queueing theory liter-
ature (e.g., Gross et al 2009):

pK =
(1− ρ)ρK

1− ρK+1
. (5)

valid for ρ < 1, where ρ ≡ λ/µ is the system utilization. Relaxing the integrality
constraint ofK, it is possible to express in closed form the optimal buffer allocation
for M/M/1/K queues in terms of ρ and pK :

KM =









ln
(

pK

1−ρ+pKρ

)

ln(ρ)









, (6)

where ⌈x⌉ is the smallest integer not superior to x. Consequently, it is possible to
derive the optimal buffer allocation for M/M/1/K queues:
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xM = KM − 1. (7)

For general-service multi-server queues M/G/c/K, the blocking probability
must be derived by approximate techniques. In particular, Smith and Cruz (2005)
have shown in a previous paper that a two-moment approximation based on the
Markovian expression, Eq. (7), is quite effective:

xǫ(cv
2) = xM + INT

[

(cv2 − 1)
√
ρ

2
xM

]

, (8)

where INT[x] is the integer part of x. In particular, for single-server queues,
M/G/1/K, given ρ and cv2, the optimal buffer allocation may be written as:

xǫ =

[

ln
(

pK

1−ρ+pKρ

)

+ ln(ρ)
]

(

2 +
√
ρcv2 −√

ρ
)

2 ln(ρ)
. (9)

Finally, one can isolate pK and determine a closed-form expression for the
blocking probability in M/G/1/K queues, as a function of K (note that for
M/G/1/K queues, K = 1 + xǫ):

pK =
(1− ρ)ρ

(

2+
√

ρcv2−
√

ρ+2(K−1)

2+
√

ρcv2−
√

ρ

)

1− ρ

(

2
2+

√
ρcv2−

√
ρ+(K−1)

2+
√

ρs2−
√

ρ

) . (10)

2.3 Performance Evaluation - Networks of Queues

For networks of queues, the estimation of the throughput is made by means of the
generalized expansion method (GEM), which is an algorithm that has been suc-
cessfully used to estimate the performance of arbitrarily configured, finite queue-
ing, acyclic networks (Kerbache and Smith 1987). The method is a combination of
node-by-node decomposition and repeated trials, in which each queue is analyzed
separately, and corrections are made to account for interrelated effects between
network queues.
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Fig. 3 Generalized expansion method

As described in details byKerbache and Smith (1987), the GEM creates for
each finite node j an auxiliary vertex (hj) that is modeled as a M/G/∞ queue,
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as seen in Fig. 3. For each entity placed into the system, vertex j may be blocked
(with probability pKj

), or may be unblocked (with probability 1 − pKj
). When

blocking occurs, the entities are rerouted to vertex hj and are delayed while node
j is busy. Vertex hj records the time an entity has to wait before entering vertex
j and computes the effective arrival rate to vertex j.

The ultimate goal of GEM is to provide an approximation procedure that
updates the service rates of upstream nodes and takes into account blocking in
services caused by downstream nodes. The approximation below is based on the
corrected blocking probabilities (p̃Ki

) of all nodes, which will provide an accurate
estimation for the overall throughput (Θ).

µ̃−1
i = µ−1

i + pKj
(µ′

h)
−1. (11)

Notice that the performance evaluation process must be conducted in a specific
order. The performance evaluation of the network under study, defined as digraph
G(N,A), is presented in Fig. 4. The algorithm accounts for blocked services at
upstream nodes, resulting in effective service rates that are reduced, in accordance
with Eq. (11). Note that the performance evaluation algorithm is a variant of
Dijkstra’s labeling algorithm for the determination of shortest paths (Dijkstra
1959). For instance, in the network illustrated in Fig.1, a valid evaluation sequence
is 1 → 2 → 4 → 3 → 5 → 6. Specifically, the sequence must make it sure a node
only will be assessed after all of its predecessors. Assuming that circuits are not
present in G(N,A), the GEM has a running time complexity of O(N2), which is
in accordance with Dijkstra’s algorithm.

algorithm

read graph, G(N,A)
read routing probabilities, p[ij], ∀ (i, j) ∈ A
read external arrival rates and service rates, Λi, µi, ∀ i ∈ N
initialize set of labeled nodes, P ← ∅
while P 6= V

choose j such that (j ∈ N) and (j 6∈ P )
if {i| (i, j) ∈ A} ⊆ P then

/* compute performance measures */
compute pKj θj
/* forward information to successors */
for ∀ k ∈ {k′| (j, k′) ∈ A} then

λk ← λk + θjp[jk]
end for

/* label node as pre-evaluated */
P ← P ∪ {j}

end if

end while

end algorithm

Fig. 4 Performance evaluation algorithm
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2.4 Optimization Algorithm

For the network under consideration, MOEAs seems to be a suitable choice for the
multi-objective maximization of throughput. MOEAs are optimization algorithms
that perform an approximate global search based on information obtained from
the evaluation of several points in the search space (Deb 2001). The population of
points that converge to an optimal value are obtained through the application of
the genetic operators, mutation, crossover, selection, and elitism.

Each one of these operators characterizes an instance of a MOEA and can be
implemented in several different ways. Additionally, MOEA convergence is guar-
anteed by assigning a value of fitness to each population member and preserving
diversity. In fact, recent successful applications of GAs were reported for single-
objective applications (Lin 2008) and for multiple-objective applications (Carrano
et al 2006). The instance of MOEA used in this study is based upon the elitist
non-dominated sorting genetic (NSGA-II) algorithm of Deb et al (2002), which is
shown in Fig. 5. In the application of GAs for multi-objective optimization, the
selection and elitism operators must be specifically structured to correctly identify
optimal conditions as it will be shown shortly.

algorithm

read graph, arrival, service rates, G(N,A), Λi ∀ i ∈ N
P1 ← GenerateInitialPopulation(popSize)
for i = 1 until numGen do

/* generate offspring by crossover and mutation */
Qi ←MakeNewPop(Pi)
/* combine parent and offspring */
Ri ← Pi ∪Qi

/* find non-dominated fronts F = (F1,F2, . . .) */
F ← FastNonDominatedSort(Ri)
/* find new population by */
/* the crowding-distance-assignment */
Pi+1 ← GenerateNewPopulation(Ri)

end for

PnumGen+1 ← ExtractParetoSet(PnumGen)
write PnumGen+1

end algorithm

Fig. 5 Elitist multi-objective genetic algorithm (NSGA-II)

Elitism is based on the concept of dominance. Point xi = (xi1 , xi2 , . . . , xin)
dominates point xj = (xj1 , xj2 , . . . , xjn) if xi is superior to xj in one objective
(fk(xi) < fk(xj), for minimization) and is not inferior in any other objective
(fℓ(xi) 6> fℓ(xj), for minimization). To perform elitism, the fast non-dominated
sorting algorithm is employed (Deb et al 2002). This algorithm separates the indi-
viduals in the population into several layers (or fronts) Fi, such that the solutions
in F1 are non-dominated, and every solution in a given front Fi, i > 1, is domi-
nated by at least one solution in Fi−1, and not by any solution in Fj , j ≥ i. This
can be achieved in O(n log n) time (Deb et al 2002).

Selection is performed by sequentially choosing points from each non-domina-
ted front (F1,F2, . . .) until the number of required individuals for the next iteration
is obtained. Some decision must be made if the maximum number of individuals is
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exceeded after the addition of a group of individuals from front Fi. One possibility
is to compute a measure of diversity, such as the crowding distance defined by Deb
et al (2002), to ensure the highest diverse population. Thus, only the points with
the largest crowding distance are kept for future iterations.

Crossover and mutation are dependent on the application, as well known. For
the problem at hand, the uniform crossover mechanism was selected (Bäck et al
1997), which is popular in multivariable encodings due to its efficiency in identify-
ing, inheriting, and protecting common genes, as well as re-combining non-common
genes (Hu and Di Paolo 2007). In this mechanism, crossover is performed for each
variable with a probability (rateCro), in accordance with the crossover operator.
The crossover operator used in the algorithm is the simulated binary crossover op-

erator (SBX) (Deb and Beyer 1999). SBX is quite convenient for real-coded GAs
because of its ability to simulate binary crossover operators avoiding re-encoding
the variables. The children (xi,(•,t+1)) are calculated from the parents (xi,(•,t))
according to the following equations

xi,(1,t+1) = 0.5
[

(1 + β)xi,(1,t) + (1− β)xi,(2,t)

]

, (12)

xi,(2,t+1) = 0.5
[

(1− β)xi,(1,t) + (1 + β)xi,(2,t)

]

, (13)

where β is a random variable with the following density function:

f(β) =

{

0.5(η + 1)βη, if β ≤ 1,
0.5(η + 1) 1

βη+2 , otherwise,
(14)

noticing that Equations (12) and (13) are designed to create children solutions
that posses a similar search power to a single-point crossover of binary-coded GAs
Deb and Agrawal (1995). By adjusting η, several different weights (β) can be
generated to produce children that are more (small η) or less (large η) similar to
their parents.

For each individual gene (each decision variables Ki or µi), the mutation
scheme occurs with a specific probability (rateMut). As suggested by Deb and
Agrawal (1995), Gaussian perturbations were added to the decision variables,
Ki + εi and µi + εN+i, for all i ∈ N , with εi ∼ N (0, 1), i ∈ {1, 2, . . . , 2N}.

Finally, to ensure feasibility of constraints (2) and (3) after crossover and muta-
tion, the integer variables values must be rounded accordingly and all the variables
readjusted by applying reflection operators as follows

Krfli
= Klowlim + |Ki −Klowlim|, (15)

and

µrfli
= µlowlimi

+ |µi − µlowlimi
|, (16)

where Klowlim is the lower limit of buffer allocation (i.e., Klowlim = 1) and µlowlimi

is the lower limit of service allocation (to ensure that ρ < 1 holds). Notice that Ki

and µi are the resulting values after crossover and mutation, and Krfli
and µrfli

are the results after reflection. The proposed scheme always generates feasible
solutions without avoiding or favoring any particular solution.
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2.5 Convergence Issues

Recently, the stopping criterion of multi-objective optimization evolutionary algo-
rithms has been analyzed in detail. Evidently, the maximum number of genera-
tions (numGen) plays an important role in the quality of the solutions. However,
increasing the number of generation may not be ideal because computational time
is wasted when many iterations do not lead to a significant improvement. Thus,
Rudenko and Schoenauer (2004) suggested that a superior stopping criterion is
obtained when a fixed number of iterations are performed without improvement.
To demonstrate the complexity of the issue, Rudenko and Schoenauer (2004) con-
ducted a comprehensive set of computational experiments. Their results revealed
that an obvious stopping criterion, such as the entire population possessing a rank
of 1, did not indicate that evolution should be terminated. Rudenko and Schoe-
nauer (2004) proposed a local stopping criterion that computes a measure of the
stability of non-dominated solutions after each iteration based on the stabilization
of the maximal crowding distance, dl, measured over L generations and calculated
by the following standard deviation:

σL =

√

√

√

√

1

L

L
∑

l=1

(dl − d̄L)2, (17)

in which d̄L is the average of dl over L generations and the criterion σL < δlim
should indicate when MOEA should stop. Rudenko and Schoenauer (2004) sug-
gested that L and δlim should be set to 40 and 0.02, respectively, which leads to a
stopping criteria that is σ40 ≤ 0.02.

3 Results and Discussion

In order to use a previous implementation of the GEM algorithm that was based
on the International Mathematics and Statistics Library (IMSL), the optimization
algorithm was coded in FORTRAN. Upon request directly from the authors all
codes are available for educational and research purposes. Firstly, the computa-
tional experiments were conducted to discover a sub-optimal set of parameters
that guarantee rapid convergence. Finally, a detailed analysis of a queueing net-
work was performed.

3.1 Parameter Setup

As indicated by previous studies on GAs, a sub-optimal set of parameters to
ensure rapid convergence with a minimal amount of computational effort may
be determined without trouble by trial and error. Only results obtained for the
network from Fig. 1 are presented, although different topologies of acyclic similarly
sized networks were also tested. The results (not presented) were similar.

Convergence is monitored in Fig. 6-a in terms of σL along the generations, for
combinations of crossover and mutation. It is remarkable that pure mutation could
solve the problem but using SBX operator (crossover) may remove instabilities
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from σL. Thus, combining mutation and SBX may be advantageous regardless of
the number of queues in the network. Figure 6-b discloses that the population size
(popSize) affects algorithm convergence, although the population size cannot be
arbitrarily increased, as it may risk the processing time.
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Fig. 6 Effects of crossover and mutation and population size

The standard deviation as function of rateMut is displayed in Fig. 7-a disclosing
that an increase in the mutation rate may speed up the convergence but after a
certain rate no further improvements are obtained. Then, mutation rates between
up to 2% seemed to respond for the best results, as shown by the experimental
results provided. In Fig. 7-b the standard deviation is presented as a function
of parameter η which responds for the SBX operator performance. From these
experiments, it is possible to conclude that values above 8 are not effective in
terms of stability.
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Fig. 7 Effect of the mutation rate and η

As a final word concerning the best group of parameters for the algorithm, one
could use the following combination: (i) combined use of SBX and mutation, with
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(ii) a mutation rate below 2%, (iii) although greater the better the population, 400
individuals seem to be enough, and (iv) the dispersion parameter, η, should not go
above 8. To ensure a finite computation time, a maximum number of generations
numGen was set to 4,000. Fortunately, MOEAs are robust enough to perform well
in a broad range of problems, as confirmed by the experiments run (not shown).

3.2 Network Analysis

The network presented in Fig. 1 was analyzed with the proposed method. Two
different squared coefficients of variation were analyzed, cv2 = 0.5 and 1.5, with
arrival rate (Λ1 = 1.0). First, the convergence speed of the genetic algorithm was
confirmed to be robust for this type of problem. The experimental set-up was
identical to the previous analysis. However, the results indicated that convergence
was stable at 2,000 iterations.
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Fig. 8 Final results for the network from Fig. 1

Figure 8 shows the results. It is possible to see the final population and the re-
spective contour plot. It is remarkable the resemblance between these two contour
plots and the exact contour plot for a single queue, Fig. 2-b. The results suggest
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that the networks of queues seem to behave such as an equivalent single queue.
Unfortunately, it is unknown whether or not it would be possible to derive some
sort of algorithm to predict the parameters of such an equivalent single queue.

Additionally note that when the squared coefficient of variation of the service
time cv2 is equal to 0.5, then the contour lines are closer to the origin point (0,0)
than when cv2 is equal to 1.5. Such a behavior is expected since a smaller cv2

means less variability in the service time. The methodology is shown therefore
consistent. Another interesting point is that the contour lines help identify the
points from which further increase is not worth in the buffer spaces (or in the
service rates) since beyond these points only negligible gains will be reached in the
throughput.

Table 1 presents some Pareto efficient solutions for a more detailed analysis.
Note that, with this multiobjective methodology, it is possible to identify points
from which there is no more interest in increasing the spend on buffer sizes or ser-
vice rates because the gain in the throughput will be rather narrow. For example,
for a cv2 = 0.5, keeping the overall service rate approximately constant one had
to increase the overall buffer size by 22% to produce a gain of only 0.01% in the
throughput. Similarly, there may be a similar point for the overall service rate.
In fact, it can be seen that for an increase of 12% in the overall service rate, an
increase of only 0.01% is produced in the throughput, which may be considered
negligible. Note also that with cv2 = 1.5 such a phenomenon can occur even more
pronounced. It is observed that it may be necessary to increase by 36% the overall
buffer size to reach an increase of only 0.6% on the throughput. It is therefore more
advantageous to maintain a system with an allocation that produces on output
of 99.99% of the input (that is, 0.9999/1.000) than spending 70% more in service
rate to raise the output by only 0.01% (ie, raising it to 100% of the arrival rate).
These are just some examples of the analyzes that can be done in finite general
service queueing networks via the multiobjective methodology.

Table 1 Pareto efficient solutions selected from the computational experiments

cv2
∑

i
Ki ∆%

∑

i
µi ∆% Θ ∆%

0.5 18 - 51.0 - 0.9999 -

22 22% 51.4 0.8% 1.0000 0.01%

20 - 46.6 - 0.9999 -

20 0% 52.1 12% 1.0000 0.01%

1.5 14 - 60.4 - 0.9944 -

19 36% 61.1 1.1% 0.9999 0.6%

19 - 61.1 - 0.9999 -

19 0% 104.0 70% 1.0000 0.01%

4 Conclusions

In order to optimize the throughput, the buffer sizes, and the service rates of
single server, general-service queueing networks, a multi-objective approach was
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presented. The generalized expansion method (GEM) was coupled with a multi-
objective genetic algorithm (MOGA) to make it possible to derive insightful Pareto
curves displaying the trade-off between throughput and the allocation of buffers
and service rates.

Topics for future investigation in this area include extensions to networks of
multi-server queues and networks of general-arrival queues, possibly by means of
kernels Gontijo et al (2011). Also interesting is to consider different performance
measures, such as the WIP, sojourn time, and so on. These are only few examples
of possible topics for research.
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