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Abstract: In this paper we show that for normal distributions, Hotelling´s T
2
 and 

multivariate exponentially weighted moving average (MEWMA) distances are directly 

related to the Bhattacharyya distance. This relationship provides important information 

about an upper bound for the misclassification probability. In fact, this useful 

information indicates the degree of overlap between in- and out-of-control processes. 

Therefore, the first purpose of this research is to present a methodology to monitor the 

mean vector of a bivariate Gaussian process by means of an informative control chart 

based on the misclassification probability bounds. Additionally, a comparison study is 

carried out to measure the effects of estimating the actual mean vector through the 

MEWMA scheme and through sliding window schemes with uniform, linear, and 

exponential weights. The results show that the confidence MEWMA control chart is 

easier to calibrate and shows less inertia for large shifts in the mean vector than the 

sliding window approaches. Additionally, equivalences between the smoothing 

parameters and the window sizes are provided for a bivariate case. 

Keywords: Gaussian point processes, mean vectors, statistical process control, 

noncentrality parameter, Bhattacharyya distance, sliding window. 
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1. Introduction  

For many industrial problems, the estimation of the misclassification probability 

is a subject of great interest. However, such a calculation may be a rather difficul t task 

even when the observed data are normal. Therefore, the option of monitoring a process 

by means of its probability of being in or out of control is usually discarded. Recent 

advances in statistical techniques with applications to the  and  control charts 

include both the univariate (Faraz and Saniga, 2013) and the multivariate (Niaki and 

Memar, 2009) cases. In fact, recent work by Niaki and Memar (2009) covers global 

process monitoring by controlling the mean vector and covariance matrix 

simultaneously. 

Considering the process control of only mean vectors, the most utilised method 

to monitor large shifts is the Hotellingôs T
2
 control chart (Hotelling, 1947). In the case 

of smaller shifts, the multivariate exponentially weighted moving average (MEWMA) 

control chart is preferred (Lowry et al., 1992), mainly because of the simplicity of its 

implementation when compared to its more famous counterpart, the multivariate 

cumulative sums (MCUSUM) control chart (Crosier, 1998). Although the methodology 

described in this paper may be extended to multivariate global process monitored by 

probabilities, as an initial proposal, we only consider the process control of multivariate 

mean vectors. 

If a closed-form expression is not available for the misclassification probability, 

one may seek either an approximate expression or an upper bound for the probability. A 

closed-form expression for the upper bound would be quite useful for many reasons. 

First, the computational effort would be reduced. Second, the evaluation of a simple 

formula would facilitate real-time insightful inferences about the actual process state. 

Furthermore, the misclassification error is known to increase significantly with the 

number of dimensions (Fukunaga, 1990), dramatically reducing the standard confidence 
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levels for the process actually being in control. Due to this fact, the evaluation of a 

probability measure instead of raw distances would provide more valuable information 

about the price to be paid for not knowing the alternative process state a priori. 

Focusing on this objective, this paper discusses the monitoring of Gaussian mean 

vectors by means of a simple distance transformation that leads to a control chart 

directly based on probabilities. 

Additionally, when a process is monitored for small magnitude shifts in the 

mean vector with MEWMA-based control charts, another question that arises is the 

inertial phenomenon, which is known to delay change detection when such a change is 

of a large magnitude (Lowry et al., 1992). When avoiding the inertial phenomenon is 

essential, the analyst may seek alternative approaches to estimate the actual mean 

vector, which includes discarding old observations by means of some type of sliding 

window (SW) scheme. While the MEWMA method accumulates information about all 

the previous observations into the actual mean vector, the SW approach lowers the 

relative influence of old observations by giving heavy weights to only the most recent 

observations. 

In fact, many authors (e.g., see Hwarng and Hubele, 1993a, 1993b; Guh and 

Shieu, 2005) have suggested a moving window approach as the essential tool for on-line 

pattern identification. However, two problems may be anticipated. The first problem is 

choosing the appropriate window size. The second problem is addressing unnatural 

patterns, i.e., when a misalignment of the pattern in time may occur. Additionally, the 

identified pattern could be different from the training pattern (Guh and Shieu, 2008; 

Hachicha and Ghorbel, 2012), and dynamic window sizes may be more appropriate. 

However, the use of dynamic sizes for the SW schemes is beyond the scope of this 

paper. As demonstrated in the computational experiments presented in this paper, the 
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use of fixed window sizes reflects directly on the magnitude of the shift to be detected. 

Some authors (e.g., Nikiforov, 2001) use SW schemes only with the significant 

observations from past data, but this procedure is excessively time consuming. 

To provide an analysis of the effects of estimating the actual mean vector based 

on the MEWMA and SW approaches, three types of SWs are proposed here for 

comparison purposes. The possible weights for the SW observations may be uniform, 

linear, or exponential. As the SW size is an important parameter, the probability control 

charts using the SW schemes can also provide benchmark criteria for existing and future 

developments. Additionally, a probability-based control chart facilitates the comparative 

study through standardisation of the statistical distances into a 0-1 interval as upper 

bounds for the usual confidence levels. 

Section 2 describes the main properties of the noncentrality parameter 

traditionally used to monitor the mean vector with Hotellingôs T
2
 and the MEWMA 

control charts. Also presented is the link between the noncentrality parameter and an 

upper bound for the misclassification probability. In Section 3, some computational 

experiments are presented to compare the performances of Hotellingôs T
2
 and the 

probability control charts. Further, the MEWMA and the SW approaches are compared 

by means of either their average run lengths (ARLs) or their average time to signal 

(ATS) because the intervals between observations are regular. Finally, Section 4 

provides some final remarks and recommendations. 

2. Methodology 

2.1 A review of the noncentrality parameter 

It is well known that the performance measured by the average run length (ARL) 

of traditional control charts such as Hotellingôs T
2
 and MEWMA depends only on the 
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noncentrality parameter and not on the shiftôs direction (Lowry et al., 1992). This 

distance is given by 

,    (1)  

where ,  and  are the observed vector, the in-control mean vector, and the in-

control covariance matrix, respectively. The decision rule gives an out-of-control signal 

when , where  is a specified threshold that leads to a pre-specified false alarm 

rate, usually defined in terms of the in-control average run length (ARL0). 

 In his original paper in 1947, Hotelling suggested the utilisation of  instead of 

d to avoid the labour of extracting the square root, but with the massive increases in 

computational power in the last decades, this problem is no longer relevant. Thus, scale 

transformations on d do not modify the chart's performance. To maintain clarity in the 

effect on the in-control limits, in this paper, d is varied in the 0-4 range for ARL 

comparisons and in the 0-7 range for comparisons of the first and second order statistics 

at the transition phase. The phase transition can be understood as a limited run length on 

which the monitored process is moving from the in-control state to the out-of-control 

state. As it is expected that a shift from the in-control process should be investigated as 

soon as detected, the transition phase statistics are more important for analysis than the 

statistic after the stabilisation of the out-of-control process, which is seldom observed in 

practice. This subject will be further explored in this section. 

While Hotellingôs T
2
 considers global process monitoring using outlying 

observations that are outside the in-control boundaries, the MEWMA statistic considers 

the entire process to be out-of-control as soon as 

,   (2) 

where  is the mean vector estimated with past and current information by a 

MEWMA scheme, such that 
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   (3) 

Observe that when , the MEWMA distance reduces to the Hotellingôs T
2 
distance. 

This version of the MEWMA scheme considering equal weights for all variables is a 

reduction of the more general case in which different weights can be set to each variable 

of the vector of observations (Lowry et al., 1992). However, in this case the MEWMA 

chart becomes directionally oriented and the ARL may vary depending on the shift 

direction. 

The noncentrality parameter is very popular in the pattern recognition field 

(Therrien, 1989), also known as Mahalanobis distance, and has a close connection to the 

Bhattacharyya distance, which is derived from the most general case, the Chernoff 

bounds (Fukunaga, 1990). Those boundaries lead to a closed-form expression for 

computing an upper limit  for the Bayes error in the case of normally distributed 

processes such as 

,   (4) 

where 

.  (5) 

The term  is known as the Bhattacharyya distance and is used as an 

important separability measure between two normal distributions, where  and , 

, are the mean vector and the covariance matrix of each class. This distance is 

composed of two terms. The first term carries the information about the process 

difference in the mean vectors, and the second corresponds to the difference in the 

covariance matrices. 

Rao (1947) explained that this distance is an explicit function of the proportion 

of overlapping individuals in the two populations. Additionally, Rao (1947) mentioned 
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that Bhattacharyya had developed a perfectly general measure defined by the distance 

between two populations based on a metric of the Riemannian geometry, with the 

angular distance between points representing the populations in a unit sphere. 

In the case of single-hypothesis tests, such as in statistical process control (SPC) 

problems, the out-of-control state is generally undetermined. In such cases, instead of 

utilising Equation (4), which assumes two known processes, it is more interesting to 

evaluate only the upper bound for the Type I error, which refers only to the known 

process, given by 

.  (6) 

Additionally, as this paper is focused only on the monitoring of mean vectors, 

the assumption of equal covariance matrices reduces the Bhattacharyya distance to the 

noncentrality parameter, except by a constant, assuming the form 

,    (7) 

where  is the mean vector estimated at the instant t,  is the in-control mean vector, 

and  is the in-control covariance matrix. This simplified form preserves all the known 

properties of the Hotellingôs T
2
 and the MEWMA control chart with respect to the 

performance measured by the ARL. 

To examine the main properties of this distance, let us consider the distribution 

of  with the expected vector  and the covariance matrix  known for the in-control 

(IC) process. For the general problem, consider that the mean vector of the out-of-

control state (OC), unknown in practice, is defined as . According to Fukunaga 

(1990) the standardised distance from individual observations to the process centre is 

,   (8) 
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where  and  is the whitening transformation. Because the expected 

vector and covariance matrix of  are 0 and , respectively, the ôs are uncorrelated, 

with  and . Thus, the expected value and variance of  for the IC 

process are 

,    (9) 

,     

.   (10) 

When the ôs are uncorrelated (this is satisfied when the ôs are independent), and 

 is independent of i, the variance of can be further simplified to 

     (11) 

.   (12) 

For normal distributions, when the ôs are uncorrelated, they are also 

independent. Therefore, Equation (10) can be used to compute , and . 

Note that in Equations (9) and (10), only the first and second order moments of  are 

given. However, if the ôs are normal, the density function of  is the gamma density 

with  and . Because the ôs are obtained by a linear 

transformation of , the ôs are normal if  is normal. Note that the gamma distribution 

becomes an exponential distribution for . Indeed, the distribution of  with the 

mean  and standart deviation  approximates the normal distribution when n is 

large (Fukunaga, 1990). 

 Considering the OC state with mean vector , the expected value of  under 

the assumption of equal covariance matrices is given as 

,    (13) 
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and the variance is given as 

.   (14) 

These results may be extended to the case in which the sample mean and sample 

covariance matrix are used in the place of known parameters, as 

.   (15) 

When  is normal,  has the beta distribution (Fukunaga, 1990) with 

 and . 

The first and second order moments for Bhattacharyya distance for equal 

covariance matrices are easily deduced from the results above. The simulated 

experiments presented in the following section correspond with the presented theoretical 

values for the first and second moments of Bhattacharyya distance and for Hotellingôs 

T
2
 with high precision for the IC state. Due to the transition phase explained earlier, the 

statistics of the OC state do not converge to the expected values unless we consider an 

extended run length after the first alarm is signalled. Thus, we are not interested in 

confirming these asymptotic results for the stationary OC state but rather in inspecting 

statistical behaviour in the transition phase with fixed run lengths. 

2.2 An alternative confidence control chart  

Based on the theoretical results presented in the previous subsection, we propose 

a different look at process monitoring. Without actually modifying the control chart 

performances, one could transform the statistical raw distances and their respective in-

control boundaries into probability values. First, if  there is no special reason to weight 

the in- and out-of-control processes differently, the processes are equally weighted in 

Equation (6), thus reducing the upper bound on the type I error to . If 

different weights for the processes are utilised, the result will be a scale modification on 

the statistic values while still preserving the 0-1 domain. 
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Observe that when the process is actually in control, either the estimated mean 

vector or the individual observations must not be significantly different from the in-

control standard error levels. This fact leads to an upper bound of  that is close to one 

because the in-control and current processes are completely overlapped. When the mean 

vector shifts from the in- to the out-of-control state, the upper bound on  decreases, 

indicating less overlap among the processes. However, if  the complementary probability 

is taken, it indicates an upper bound for the confidence level, which is closer to zero, 

meaning that the current process is not separate from the in-control state. 

Based on such considerations, a confidence control chart utilising individual 

observations is taken as the standard level for the different ways of estimating the mean 

vector. This approach can be viewed as the MEWMA chart with  or a sliding 

window chart with unitary window size. For this reason, this control chart is identified 

by the SW1 code (sliding window of size 1). This control chart is a simple scale 

transformation of Hotellingôs T
2
 with the use of Bhattacharyya distance, triggering a 

signal when  

,  (16) 

where  is the in-control upper limit to achieve a desired ARL0. 

If the individual observed vector is changed by a mean vector, it is possible to 

utilise the MEWMA or the SW schemes for estimation of the vector. Equation (3) is 

utilised to estimate  in the case of an MEWMA-based control chart. For all methods 

utilising mean vector estimates instead of individual observations, the probability 

control chart triggers an out-of-control signal as soon as 

.  (17) 

where  is chosen to achieve a desired ARL0. 
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For all cases of SW schemes, only the observation vectors inside the current 

window are weighted and the mean vector is given by 

,     (18) 

with  and k representing the window size. Let us now describe each 

type of weight considered. 

In the uniform SW (USW) approach, the weights are equal for all the 

observations inside the window of size k, with  given by 

   (19) 

The linear SW (LSW) approach gives more weight to the most recent 

observation and decreases linearly the weight as the observation gets older such that 

.     (20) 

Finally, in the exponential SW (ESW) scheme, the weights for the observation 

vectors inside the window are distributed by 

.    (21) 

where  is a smoothing factor between 0 and 1. When , the exponentially 

weighted window converges to the uniform window. The smoothing factor  utilised 

for the exponentially weighted window is fixed to 0.7 as it decays below 0.5 after two 

steps. The calculation of individual weights for the three proposed sliding window 

schemes of size 4 is illustrated in Table 1, while the weights for the windows with size 2 

are shown in Table 2. 

TABLE 1 IS AROUND HERE. 

 

TABLE 2 IS AROUND HERE. 
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The control chart calibration procedure is performed in two steps to achieve an 

ARL0 = 200 for all control charts. The first step adjusts the linear regression models in 

the form . This procedure gives an approximate first estimate of 

in-control thresholds for each chart. The second step in the calibration procedure 

iteratively adjusts the threshold by interpolation. The next section illustrates the 

functionality of the proposed control chart and presents analysis of the comparative 

experiments. 

3. Results and discussion 

The first part of the experiment compares Hotellingôs T
2
 and the SW1 control chart, 

which performs a scale transformation of Hotellingôs distance. Figure 1-(a) shows the 

signal pattern for the case of no change in the mean vector (that is, d = 0), while Figures 

1-(b) and 1-(c) shift the mean vector process at time t = 201 to the distances d = 3 and d 

= 6, respectively. In the respective scatter plots illustrated in Figures 1-(d), 1-(e) and 1-

(f), the out-of-control observation vectors are marked with light red dots, while the in-

control vectors are marked with dark black dots. In Figure 1, the vertical lines in the 

middle of the chart delimit the change point. The horizontal dashed lines are the in-

control thresholds for the pre-defined ARL0 = 200. Given a probability value, the in-

control upper limit for the SW1 chart is  (73,62%). The corresponding 

in-control noncentral distance that holds for an ARL0 = 200 in the Hotellingôs T
2
 control 

chart is d = 3.265, which is a scale transformation of . 

FIGURE 1 IS AROUND HERE. 

 

Noteworthy in Figure 1-(c), is the fact that most of the out-of-control 

observation vectors do not overlap with the in-control region, resulting in probability 

values converging to 1. This result indicates that when considering individual 

observation vectors, the confidence level converges to 1 when the processes do not 
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overlap. This pattern does not hold for Hotellingôs T
2
 statistic because no bound exists 

there for the maximum values, which makes out-of-control signals difficult to interpret. 

A more detailed summary of the raw distances and their equivalent confidence 

levels are given in Table 3, where  and  are the average values and Sd(*) are the 

standard deviations computed over 100,000 sample replications of size 10. Notice that 

the simulated experiments confirm with high precision the parameters of the Hotellingôs 

T
2
 statistic for the IC state (i.e., d = 0). As expected, the ARL for both charts is the 

same, which indicates that the transformation of Hotellingôs T
2
 into probabilities using 

the Bhattacharyya distance does not actually modify ARL performance. As indicated 

earlier, for d > 0 the estimates may not converge to the expected values due to the 

transition phase affecting the first 10 observations after the process has changed. As the 

ARL is a function of d, a fixed run length is affected differently for distinct values of d. 

TABLE 3 IS AROUND HERE. 

 

Figure 2-(a) is composed of four sets of control charts, and their respective two-

dimensional scatter plots are shown in Figure 2-(b). The MEWMA-based control charts 

utilise ɚ = 1, such that they perform identically to the SW1 control chart, at a maximum 

standard confidence level to protect the global in-control process region. 

FIGURE 2 IS AROUND HERE. 

 

As evident in Figure 2, both USW and ESW control charts with sliding windows 

of size 2 (SW2) performs identically because . Also noticeable is the reduction in 

the in-control limits of the USW and ESW charts in Figure 2, which is 

 (d = 2.2908). This reduction indicates that the chart becomes 

sensitive to small changes in the mean vector, no matter the individual distances. The 

in-control limit for the LSW chart with SW2 scheme is  (d = 2.4115). 
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Figure 3 shows the reducing effect on the confidence levels for all control charts. 

The MEWMA-based control chart with ɚ = 0.7 is called MEWMA.7 and the 

transformed in-control limit is   (d = 2.3842). For the SW2 chart 

with the ESW scheme in Figure 3, the estimated threshold is  (d = 

2.3212). 

FIGURE 3 IS AROUND HERE. 

 

Despite the fact that the control charts become more sensitive to small shifts in 

the mean vector, a drawback of the USW, LSW, and ESW schemes with SW2 is 

noteworthy, a drawback that allows some extreme, clearly out-of-control values to be 

considered in-control. In the same manner, many vectors that could be considered in-

control are marked with out-of-control dots. This happens because the observation 

vector receives, at the instant tï1, too much weight in the SW approach for the current 

observation vector to compensate (see Table 2). The MEWMA-based control chart 

seems to avoid this problem, providing a better differentiation between the in- and out-

of-control vectors. Such behaviour is because the MEWMA scheme accumulates all the 

past information in the current mean vector, while the SW scheme does not. 

More detailed information concerning the mean and standard deviation of the 

transformed statistics for all control charts are given in Table 4 and 5. Notably, there is a 

reduction in the in-control limits for small distances. That reduction provides insight 

into the optimum distance that can be efficiently detected for each chart configuration, 

which is below d = 3 for the MEWMA.7 and SW2 charts. 

TABLE 4 IS AROUND HERE. 

 

TABLE 5 IS AROUND HERE. 

 

The ARL comparisons between the MEWMA.7, MEWMA.4, SW2 and SW4 

control charts are given in Tables 6. Observing Table 6, although the SW2 control 
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charts perform better than the SW1 chart (Table 1) and similarly to the MEWMA.7 

chart for small shifts, an inertial effect is visible for distances larger than d = 3.0 in the 

case of SW schemes. Ordering the schemes from the least to the most sensitive with 

respect to the inertial effect, the MEWMA chart performs better, followed by the USW, 

ESW and LSW charts. 

TABLE 6 IS AROUND HERE. 

 

When the window size increases to 4 (SW4 control charts), the MEWMA-based 

control chart has the ɚ parameter decreased from 0.7 to 0.4, and for comparison 

purposes, is called MEWMA.4. Figure 4 illustrates the standard patterns for the four 

confidence control charts for a shift of magnitude d = 3. The respective in-control limits 

are very close to each other, and all of them lead to completely separable processes, 

which are  (d = 1.6028),  (d = 1.5789), 

 (d = 1.7530) and  (d = 1.7168). Table 5 provides the 

summary statistics for the MEWMA.4 and SW4 schemes. 

FIGURE 4 IS AROUND HERE. 

 

Figure 5-(a) shows an ARL comparison of all control charts, while Figure 5-(b) 

uses the natural logarithm to amplify the differences. Splitting the comparison into two 

groups, Figure 6-(a) compares the SW1, MEWMA.7 and SW2 control charts, while 

Figure 6-(b) compares the SW1, MEWMA.4 and SW4 control charts. Noticeable in the 

figures is the high degree of inertia effect produced by the SW schemes. 

FIGURE 5 IS AROUND HERE. 

 

The second set of control charts in Figure 6-(b) compares the SW1, MEWMA.4 

and SW4 charts. Although these control charts perform better for shifts below d = 2.0, 

they have a higher degree of inertial effect than the SW2 charts for shifts in which d = 4. 

Again, the USW4 has the best performance, which is comparable to the MEWMA.4 
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chart. With respect to robustness against the inertia impact of large shifts, the USW 

approach seems to be the most effective scheme. The LSW and ESW schemes perform 

worse in both cases when compared to the USW scheme for large shifts. While the 

differences between the SW schemes for small shifts are not evident in the SW2 charts, 

the LSW4 and ESW4 charts perform worse than the USW4 chart for small shifts as 

well. 

FIGURE 6 IS AROUND HERE. 

 

Figure 7 presents comparisons between the mean values produced by the 

MEWMA chart varying the ɚ parameter from 1 to 0.1 by 0.1 intervals and the mean 

values for the sliding windows chart with window sizes 1, 2, 4, 6, 8, 10, 12, 14, 16 and 

20. This experiment makes it possible to choose the appropriate window size that would 

present expected performance similar to a specific ɚ value for the MEWMA chart. As 

shown in the above experiments, this expected equivalent performance is limited to an 

ideal range of noncentral values, as the sliding windows tend to present considerably 

more inertia from large shifts than the MEWMA method. 

FIGURE 7 IS AROUND HERE. 

 

For example, the mean value on the MEWMA chart with ɚ = 0.7 is close to 

15%, which is similar to the sliding window of size 2. For ɚ = 0.4, the window size that 

presents the approximate mean value is 4. Thus, if a specific magnitude of mean shift in 

the process requires ɚ = 0.2 on the MEWMA chart, to achieve similar performance with 

sliding window schemes one should select a window of size 10 or 12, depending on the 

sliding window scheme. Additionally, note that the ű parameter in the exponentially 

weighted window was fixed at 0.7 for all window sizes, but it can be reduced as the 

window size increases to compensate for differences. 
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A detailed comparison between the MEWMA-based confidence control chart 

baselines (mean values) and standard deviations for the in-control process, with ɚ 

varying from 1 to 0.1 by 0.1 units, is illustrated in Figure 8. These values agree 

completely with the expected ones. To analyse the out-of-control behaviour of the 

proposed statistic, the mean vector is shifted, with d varying in the 0.5-7 range by 0.5 

units. This information on the first and second order moments of the proposed statistic 

also provides valid informative support for the decision makers. 

FIGURE 8 IS AROUND HERE. 

 

From the results presented in Figures 9 and 10, an interesting out-of-control 

statistics pattern is noticeable for the confidence chart in the transition period that is 

fixed to 20 observations. In Figure 9 (a), the ɚôs are positioned above the MEWMA bars 

and the window sizes for the SW schemes are specified in the horizontal axis. Note that, 

as the baseline decreases with the smoothing parameter ɚ, the standard deviation has a 

maximum point in Figure 9 (b) that is highly affected by the inertial period of 20 

observations and that does not converge to the expected value.  

FIGURE 9 IS AROUND HERE. 

 

FIGURE 10 IS AROUND HERE. 

 

We observe that the mean value and standard deviation of the stationary out-of-

control state only makes sense if the researcher waits for the convergence after the 

inertial period. That waiting generally does not take place for the problems found in 

SPC because the monitoring stage is stopped after the first signal occurrence, and the 

out-of-control process stabilisation is not verified in practice.  

To illustrate a common decision problem that occurs in many applications, take 

the example given in Figure 10. A researcher is monitoring a bivariate Gaussian process 

without any prior information about the direction of change. Thus, the non-directional 
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MEWMA control can be selected with sliding window schemes to also perform on-line 

pattern identification. Additionally, as the researcher has no prior information about the 

magnitude of the shift, a control chart to monitor large shifts can be configured at the 

cost of not detecting the change if it is a small change. Otherwise, the control chart can 

be configured to detect a small shift, but at the cost of an inertial delay if the actual shift 

occurring in the process is large.  

In a simulated scenario such as the example in Figure 10, the threshold of all 

proposed control charts are nominally specified to detect a small shift utilising d = 1, 

which given in probability is . In Figure 10 (a), 

showing an extended run length of size 400 for the in-control process, the charts are not 

exactly calibrated to the same ARL, but as shown in Figure 7, they are expected to show 

similar performance for small shifts in the mean vector. In fact, the ESW scheme is 

clearly configured to detect smaller changes than all other concurrent schemes, given 

the excessive number of false alarms shown in Figure 10 (a). In Figure 10 (b) and (c), a 

short run length of size 40 is monitored when two types of shifts occur at position t = 

21.  

As all the control charts are configured to detect small shifts, they performed 

similarly in detecting a shift of size 1. However, when a large shift of size d = 7 

occurred, as shown in Figure 10 (c), the ESW scheme clearly performed the worst. Such 

behaviour in the SW schemes can be related to the number of observations that are 

needed to fulfil the actual estimate of the mean vector to compensate for the information 

history accumulated by the MEWMA scheme. 

It is interesting to note that while the expected value for the proposed statistic 

when d = 7.0 and ɚ = 0.1 can be given by 
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the observed value of the first 20 vectors in 50,000 Monte Carlo simulations converges 

to 0.7886. This reflects the high inertial effect suffered in the control charts configured 

for small change detection when the actual change happening in the process is large. 

4. Conclusion 

In this paper, we discuss an alternative way of monitoring Gaussian mean 

vectors through the use of an upper bound for the confidence that the process is in 

control. Instead of monitoring the noncentrality parameter, we suggest the use of the 

Bhattacharyya distance and its relationship with the upper bound of the 

misclassification error. While the traditional distance of Hotellingôs T
2
 has no maximum 

values, the proposed confidence control chart based on probabilities for individual 

observation vectors manifests a useful distinction between processes in the 0-1 range. In 

this case, when the out-of-control process becomes completely separable from (not 

overlapped with) the in-control process, the proposed statistic converges to 1, not going 

to infinity. 

Additionally, we show that the probability control chart for individual 

observation vectors can be extended to more general cases, the monitoring of small 

shifts through the use of MEWMA-based control charts and control charts with sliding 

window schemes. In the same manner as the MEWMA method, instead of using 
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individual observation vectors, the sliding window approaches are commonly used to 

estimate the actual mean vector for different purposes, including on-line pattern 

recognition. We show the equivalence in performance measured by the ARL among the 

MEWMA-based control charts and sliding window schemes for specific parameters.  

While this equivalence holds for small shifts in the mean vector, the sliding 

window approach proves to be more susceptible to the inertial effect for large shifts than 

the MEWMA-based scheme. Indeed, in the same manner that a decrease in the 

weighting factor ɚ in the MEWMA chart helps in identifying small shifts, an increase in 

the sliding window size corresponds to more effective detection of smaller shifts but 

with a greater inertial effect for large shifts than the MEWMA-based chart. 

Future work on this topic includes the monitoring of the covariance matrix of a 

Gaussian process through the use of probability-based control charts, as well global 

process monitoring, i.e., the joint monitoring of the mean vector and covariance matrix 

of a multivariate Gaussian process. 
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Table 1: Weights computation for sliding window schemes with size 4 (SW4) 

Window scheme \ Window positionŸ t-3 t-2 t-1 t Ɇ 

Uniform scheme 1/4 1/4 1/4 1/4 4/4 

Uniform weights 0.250 0.250 0.250 0.250 1 

Linear scheme 1/4 2/4 3/4 4/4 10/4 

Linear weights 0.100 0.200 0.300 0.400 1 

Exponential scheme 
    

1.77 

Exponential weights 0.135 0.193 0.276 0.395 1 

 

 

Table 2: Weights for sliding window schemes with size 2 (SW2) 

Window scheme \ Window positionŸ t-1 t 

Uniform 0.500 0.500 

Linear 0.333 0.667 

Exponential 0.412 0.588 

 

 

Table 3: Summary of Hotellingôs T2 and SW1 statistics with ARL comparison 

d 
  

ARL 
  

ARL 

0.0 2.000 1.850 200.6 20.00 15.74 200.6 

 
0.006 0.006 0.634 0.001 0.000 0.634 

0.5 2.251 2.070 118.8 21.97 16.93 117.7 

 
0.007 0.007 0.376 0.001 0.001 0.372 

1.0 3.001 2.642 43.1 27.62 19.57 43.1 

 
0.009 0.008 0.136 0.001 0.001 0.136 

1.5 4.252 3.407 16.0 36.13 21.96 16.0 

 
0.013 0.011 0.051 0.001 0.001 0.051 

2.0 6.003 4.263 7.0 46.39 22.98 7.0 

 
0.019 0.013 0.022 0.001 0.001 0.022 

2.5 8.253 5.163 3.6 57.19 22.30 3.6 

 
0.026 0.016 0.011 0.002 0.001 0.011 

3.0 11.004 6.086 2.2 67.49 20.13 2.2 

 
0.035 0.019 0.007 0.002 0.001 0.007 

3.5 14.270 7.039 1.5 76.51 16.97 1.5 

 
0.143 0.070 0.005 0.002 0.001 0.005 

4.0 18.021 7.987 1.2 83.86 13.39 1.2 

 
0.180 0.080 0.004 0.003 0.000 0.004 

h(ARL0=200) 10.66 
  

73.62 
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Table 4: Summary statistics for the MEWMA.7 and SW2 control charts 

 MEWMA.7 USW2 LSW2 ESW2 

d 
        

0.0 11.84 9.85 11.10 9.05 12.18 10.00 11.40 9.32 

 
0.08 0.07 0.08 0.06 0.09 0.07 0.08 0.07 

0.5 14.07 11.25 13.36 10.48 14.35 11.39 13.63 10.74 

 
0.10 0.08 0.09 0.07 0.10 0.08 0.10 0.08 

1.0 20.39 14.22 19.78 13.54 20.52 14.44 19.94 13.81 

 
0.14 0.10 0.14 0.10 0.15 0.10 0.14 0.10 

1.5 29.87 16.92 29.36 16.44 29.74 17.45 29.38 16.78 

 
0.21 0.12 0.21 0.12 0.21 0.12 0.21 0.12 

2.0 41.22 18.36 40.77 18.29 40.71 19.60 40.61 18.82 

 
0.29 0.13 0.29 0.13 0.29 0.14 0.29 0.13 

2.5 53.09 18.33 52.61 18.95 52.09 20.75 52.24 19.79 

 
0.38 0.13 0.37 0.13 0.37 0.15 0.37 0.14 

3.0 64.31 17.05 63.67 18.63 62.72 21.12 63.11 19.90 

 
0.45 0.12 0.45 0.13 0.44 0.15 0.45 0.14 

3.5 74.06 14.94 73.19 17.65 71.86 20.99 72.45 19.42 

 
0.52 0.11 0.52 0.12 0.51 0.15 0.51 0.14 

4.0 81.94 12.44 80.80 16.29 79.14 20.59 79.90 18.61 

 
0.58 0.09 0.57 0.12 0.56 0.15 0.56 0.13 

h(ARL0=200) 50.86  48.11  51.66  49.01  
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Table 5: Summary statistics for the MEWMA.4 and SW4 control charts 

 MEWMA.4 USW4 LSW4 ESW4 

d         
0.0 5.76 4.72 5.45 4.28 6.58 5.29 6.32 5.09 

 
0.04 0.03 0.04 0.03 0.05 0.04 0.04 0.04 

0.5 7.84 5.94 7.61 5.65 8.64 6.64 8.39 6.44 

 
0.06 0.04 0.05 0.04 0.06 0.05 0.06 0.05 

1.0 13.77 8.68 13.73 8.84 14.49 9.82 14.24 9.64 

 
0.10 0.06 0.10 0.06 0.10 0.07 0.10 0.07 

1.5 22.72 11.73 22.88 12.67 23.25 13.62 22.99 13.51 

 
0.16 0.08 0.16 0.09 0.16 0.10 0.16 0.10 

2.0 33.51 14.53 33.76 16.53 33.68 17.36 33.42 17.40 

 
0.24 0.10 0.24 0.12 0.24 0.12 0.24 0.12 

2.5 44.92 16.78 45.04 20.01 44.55 20.64 44.26 20.88 

 
0.32 0.12 0.32 0.14 0.32 0.15 0.31 0.15 

3.0 55.88 18.34 55.62 22.80 54.81 23.16 54.46 23.62 

 
0.40 0.13 0.39 0.16 0.39 0.16 0.39 0.17 

3.5 65.63 19.13 64.78 24.73 63.76 24.76 63.35 25.45 

 
0.46 0.14 0.46 0.17 0.45 0.18 0.45 0.18 

4.0 73.77 19.19 72.21 25.77 71.11 25.43 70.63 26.33 

 
0.52 0.14 0.51 0.18 0.50 0.18 0.50 0.19 

h(ARL0=200) 27.47  26.77  31.90  30.82  
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Table 6: ARL comparison between MEWMA and SW control charts 

d EWMA.7 USW2 LSW2 ESW2 EWMA.4 USW4 LSW4 ESW4 

0.0 198.9 202.7 201.8 201.9 199.3 199.0 199.1 200.7 

 
4.45 4.53 4.51 4.51 4.46 4.45 4.45 4.49 

0.5 83.2 82.0 84.6 81.0 52.6 54.4 61.1 59.2 

 
0.83 0.82 0.85 0.81 0.53 0.54 0.61 0.59 

1.0 22.7 22.2 23.7 22.4 12.8 13.2 15.4 14.8 

 
0.23 0.22 0.24 0.22 0.13 0.13 0.15 0.15 

1.5 8.4 8.0 8.6 8.1 5.6 5.7 6.7 6.5 

 
0.08 0.08 0.09 0.08 0.06 0.06 0.07 0.06 

2.0 4.1 3.9 4.2 4.0 3.4 3.7 4.3 4.2 

 
0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 

2.5 2.6 2.5 2.8 2.6 2.5 3.0 3.5 3.5 

 
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

3.0 1.9 2.0 2.2 2.1 2.0 2.6 3.0 3.0 

 
0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 

3.5 1.5 1.8 2.0 1.9 1.7 2.3 2.6 2.6 

 
0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 

4.0 1.3 1.6 1.9 1.8 1.5 2.1 2.2 2.3 

 
0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 
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Figure 1 ï Confidence control chart for individual vectors (SW1) with scatter plots 
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(a) Control Charts (b) Scatter plots 

Figure 2: Confidence control charts (a) with ɚ = 1, SW2, ű = 1 and the respective scatter plots (b) 
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(a) Control charts (b) Scatter plots 

Figure 3: Confidence control charts with ɚ = 0.7, SW2, ű = 0.7 and the respective scatter plots 
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(a) (b) (c) (d) 

Figure 4: Confidence control charts with ɚ = 0.4, SW4 and ű = 0.7 
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(a) ARL 

 
(b) ln(ARL) 

Figure 5: (a) ARL and (b) ln(ARL) comparison for all control charts 
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(a) (b) 

Figure 6: ln(ARL) comparison for  (a) SW1, MEWMA.7 and SW2 and (b) SW1, MEWMA.4 and  SW4 control charts 
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Figure 7: Comparison of mean values of the MEWMA and SW control charts 

 

 

 
Figure 8: Mean value and standard deviation of the Confidence MEWMA CC for 

the in-control process with various ɚôs  
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Figure 9: Mean value (a) and standard deviation (b) of the MEWMA -based 

control chart for the out-of-control process with various ɚôs 
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(a) d = 0 

 

(b) d = 1 

 

(c) d = 7 

Figure 10: Transitional phase comparison for (a) d = 0, (b) d = 1, (c) d = 7 with 

MEWMA.1 and SW20 schemes 

 


