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Abstract: In this paper we show thafor normal distributions Hotelling’s F and
multivariate exponentially weighted moving average (MEWMA) distances are directly
related to the Bhaticharyya distance. This relationship providegpbrtant information
about an upper bound fothe misclassification probability. In fact, this useful
information indicates thelegree ofoverlap between iand outof-control processes.
Therefore, the firspurpose of thigesearch is to present a methodolagymonitor the
mean vector of a bivariate Gaussian process by means of an informative control chart
based orthe misclassificationprobability bounds. Additionally, a comparison study is
carried out to measure the effects of estimating the actual mean véstough the
MEWMA scheme andhrough sliding window schemewith uniform, linear and
exponential weightsThe esultsshowthat the confidence MEWMA control chart is
easier to calibrate and shows temertia forlarge shifts in the mean vector than the
sliding window approacks Additionally, equivalences betweerthe smootling
parameters anthewindow sizes are provided farbivariate case
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1. Introduction

For many industrial problemshe estimationof the misclassification probability
is a subject ofgreatinterest However, such aalculationmay bea rathe difficult task
even when the observed datenormal Thereforethe option of monitoling a process
by means of its probability of being or outof control is usuallydiscarded Recent

advances instatistical techniqueswith applications tothe X and S* control chars

include both the univariate(Farazand Saniga 2013) and the multivariate (Niaki and
Memar, 2009)case. In fact, recent vork by Niaki and Memar (2009) covers global
process monitoringby controlling the mean vectorand covariance matrix
simultaneously

Considering the process controlaily mean vectors, the most iggéd method
to monitorlargeshifts is theH o t e | |2 icomtrplockart(Hotelling, 1947) In the case
of smaller shiftsthe multivariate exponentit weighted moving averagdViEWMA)
control chartis preferred(Lowry et al., 1992) mainly because othe simplicity of its
implemenation when compared tdts more famous counterpart,the multivariate
cumulative sumsMCUSUM) control chart(Crosier, 1998)Although the methodology
describedin this papermay be extended to multivariate global procesmitored by
probabilities, as an initigiroposl, we only consider the process control of multivariate
mean vectors.

If a closedform expression is not avable for the misclassificatiorprobability;
one may seek either an approximate expressiam upper bounébr the probability A
closedform expressiorfor the upper boundvould be quiteuseful for many reasons.
First, the computational effort would weduced. Secondhe evaluation of a simple
formula would facilitate reattime insightful inferencesabout the actual process state.
Furthermore,the misclassification errois known toincrease significantly with the

number of dimensiong-ukunaga, 1990ramaticallyreducingthe standard confidence



levels for the process actuallgeingin control. Due to this fact, the evaluation of a
probability measure instead of raw distanegsild providemore valuable information
about the priceto be paid fornot knowing the alternative process statepriori.
Focusingon this objective,this paper discussethe monitoring of Gaussian mean
vectors by means of a simple distance transformation that leads to a control chart
directly based on probabilities.

Additionally, when a process is monitoretbr small magnitudeshifts in the
mean vector withMEWMA-basedcontrol chars, another question that arises the
inertial phenomenagrwhich isknown to delay change detection when such a change is
of a largemagnitude(Lowry et al., 1992) When avoidng the inertialphenomenons
essentigl the analystmay seekalternative approacks to estimate the actual mean
vector, which includes discardingld observationdy means of somégype of sliding
window (SW) schemeWhile the MEWMA method accumulates information about all
the previous observationato the actual mean vectothe SW approachlowers the
relative influence of oldbservationsy giving heavyweights to only the mostrecent
observations

In fact, many authorqe.g., seeHwarng and Hubele, 1993a, 1993b; Guh and
Shieu, 200bhavesuggested a moving window approachhesessential tool for oiine
pattern identificationHowever, two problemsay be anticipatedlhe first problemis
choosng the appropriate window siz&he fcondproblemis addressg unnatural
patternsi.e., when anisalignment of the pattern in timmeay occur. Additionally, the
identified patterncould be different from the training patte{@uh and Shieu, 2008;
Hachicha and Ghorbel, 2012nd g/namic window sizesmay be more appropriate
However, he use ofdynamic sizes for th&W schemess beyond the scope of this

paper As demonstratedn the computationaéxperimentspresented in this paper, the



use of fixedwindow sizes reflects directly ohé magnitude of the shift to be detected.
Some authors (e.g.Nikiforov, 2001) use SW schemesnly with the significant
observationd$rom past datgbut this procedurés excessivelyime consuming

To providean analysisof the effects of estimating thetaal mean vector based
on the MEWMA and SW approacks three types ofSWs are proposechere for
comparisonpurposesThe possible weights for the SWoservatios may beuniform,
linear, or exponential As theSW gze is an important parametethe probabity control
chartsusingthe SWschemes caalsoprovidebenchmark criteridor existing and future
developmentsAdditionally, a probability-based control chafacilitates the comparative
study through standardsation of thestatisticaldistance into a 0-1 interval as upper
bounds for the usual confidence levels

Sedion 2 describesthe main properties of thenoncentrality parameter
traditionally used to monitor the mean vectwith Ho t e | T?iamd¢hé MEWMA
control charts Also presented ithe link betweenthe noncentrality parameter aad
upper boundfor the misclassificationprobability. In Sed¢ion 3, some computational
experiments are presented to comptre performances oHo t e | IT% andgthes
probability control chag. Further, theMEWMA and the SWapproaches areompared
by means ofeither their average run length(ARLS) or their average time to signal
(ATS) becausethe intervad between observationare regular Finally, Sedion 4

providessomefinal remarksand recommendations

2. Methodology
2.1A review of the noncentraity parameter
It is well known that thgoerformance measured by taeerage run lengthARL)

of traditional control chartsuch asHo t e | T?iaml MIBVMA depends only on the



noncentrality parameteand n o t on t heetiondUowry ét @ls 199R2) This
distance is given by

drz = (X, - MujTEEI(Kz —M,), (1)
whereX,, M, andk, arethe observedector, thein-control mean vectgrandthe in
control covariance matrixrespectively The decision rule gas an oubf-control signal

whend? = h,, whereh, is a specified thresholthat leads to a prepecifiedfalse alarm

rate, usually defined in term$ e in-control average run leng{ARL).

In his original paper in 194Hotelling sugested the uiation ofd?* instead of

d to avoid thelabour of extractingthe square roptut with the massive increases in
computational power in the last decadess problem is no longer relevafthus,scale
transformations ol do not nodify the chars performance. @ maintainclarity in the
effect on the ircontrol limits, in this paper d is variedin the G4 range for ARL
comparisons and in the@rangefor comparison of the first and second order statistics
at the transition phas&€he phasdransition can be understood as a limited run length on
which the monitored process is moving from thecamtrol state to the owdf-control
state.As it is expected that a shift from the-@ontrol process should be investigated as
soonasdedected, the transition phase statistics are more impddaanalysisthan the
statistic after the stalghtion of theout-of-control process, whicls seldomobserved in
practice.This subject will béurtherexploredin this section.

Whi | e H o T2ecbnisiders ggfdlsal process monitoringsing outlying
observations that are outside thecontrol boundaries, the MEWMA statistic considers
theentireprocess to beut-of-control as soon as

z7 = (M, —My)TE™H(M, — M) > h,, (2)
where M, is the mean vector estated with pat and current information by a

MEWMA scheme such that



M,=(1—-AM, ,+X,,0<1=<1 (3)
Observe that whea = 1, the MEWMA di st ancesTfdisthnee e s

This version ofthe MEWMA scheme considering equal weights for all varabis a
reduction of the more general casevhich different weights can be set to each variable
of thevector ofobsenations(Lowry et al., 1992)However,in this case the MEWMA
chart beomesdirectionally oriented and the ARL may vary depending on sthié
direction.

The noncentrality parametes very popular in the pattern recognition field
(Therrien, 1989)also known as Mahalanobis distanaedhasa closeconnectiorto the
Bhattacharyya distancevhich is derived from themost general case, th@hernoff
bounds (Fukunaga, 1990)Those boundiries lead to a closedorm expressionfor
computng an upperlimit for the Bayes errorin the case ofnormaly distributed

processesuch as

e =P =P, [p;(X) = p,(X) dX = /B, » Pe™#/?) (4)
where
u(1/2) = (M, — M)T (E"+E‘)_1 (M; —M,) +>In | : (5)
g- 2 2 2 T T

The termu(1/2) is known as the Bhattacharyya distancend is used as an
important separabilitymeasurebetweentwo normal distributions where M; and E;,
i = 1,2, are the mean vector are covariance matrix oéachclass.This distance is
composedof two terms The first term carriesthe information about the process
difference in the mean vectorand the secondorresponddo the difference in the
covariance matrices.

Rao(1947)explained that this distance is an explicit function of trepprtion

of overlapping individuals in the two populatiogdditionally, Rao(1947) mentioned

t
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that Bhattacharyya had developed a perfectly general measure defined by the distance
between two populations based on a metrichef Riemannian geometry, witthe
angular distance between points representing the populations in a unit sphere.

In the case o$inglehypothesidests such asn statistical process contrdbPQ
problems the outof-control state iggenerallyundeterminedin such casesnstead of
utilising Equation (4) which assumeswo known processes is more interesting to
evaluate only the upper bound for thgpe | error, whichrefers only to the known

processgiven by

&1 = \/P/P; [/p, (30 * p,(X) dX = /B, /P e /2, (6)

Additionally, as thispaperis focusedonly on themonitoring of mean vectors,
the assumption of equal covariance matrieshices the Bhattacharyya distance to the
noncentrality parameteexceptby a constantassuminghe form

n(1/2) =2 (M, — Mp)TE, ™ (M, — M), (7)
whereM., is the mean vector estimated a thstant, M, is the ircontrol mean vector
andk,; is the incontrol covariance matrixthis simplified formpreserves all the known
properties o fl?andithe MBWOIA edntrol ahagtdith respectto the
performance meased by theARL.

To examinethe main propertiesof this distancglet us considethe distribution
of d* with the expected vectoM and the covariance matriknown for the incontrol
(IC) process. 6r the generalproblem considerthat the mean vector of theutof-
control state (OC), unknown in practice, islefined asM,. Accordingto Fukunaga

(1990)the standardsed distance from individual observatgio theprocessentreis

d*=(X-M)TEH(X-M) =ZTZ=2L, 7], (8)



whereZ = AT(X — M) and A is the whitening transformatioBecausethe expected
vector and covariance matrix &fare0 andI, respectively, the6s ar e uncorr el

with E(z;) = 0 andVar(z,) = 1. Thus, the exgcted value and variance @t for the IC

processre
E(d?|IC) = nE(z]) =n, (9)
Var(d?|IC) = E((d?)?) — E2(d?),
Var(d?|IC) = Xk, E(z") + Xk, Iy E(z'27) —n® E*(2]). (10)

When thez’Zd6s are uncorrel atedzds harse iisn dseape rsdf e e
E(z?) is independent bi, the variance cfi*can be further simplified to
Var(d?|IC) = ny, (11)
vy =E(z") - E*(z) = E(z) — 1. (12)
For normal distributions, when theg6 s ar e uncorrel ated,
independentTherefore,Equation(10) can be used to ogputeVar(d*|IC), andy = 2.
Note that inEquations(9) and (0), only the first and second order momentsidfare
given. However, ifthe,6 s ar e nor mal , tdhigthedyamms densgty f unct |
with f=nf/2—-1 and a =1/2. Becausethe z0 s ar e obtained by
transformation oX, thez,6 s ar e XnsmormehNote thdtthe gamma distribution
becomes an exponential distribution for= 2. Indeed,the distribution ofd® with the
meann and standart deviatiogny approximates the normalistribution whenn is
large(Fukunaga, 1990)
Consideringhe OCstatewith mean vectoM,, the expectedalue ofd* under
theassumptiorof equal covariance matrices is given as

E(d*|0C) = n+ M{M,, (13)



andthevariances givenas
Var(d?|0C) = 2n + 4MM,. (14)

Theseresuls may be extended to the casevhichthe sample mean and sample

covariance matrixra used irtheplace ofknown parameters, as

7= (X M) E1(X — M). (15)
When X is normal, £ has the beta distribution(Fukunaga, 1990)with
E(Z|IC) = n/(N — 1) andVar(Z|IC) = 2n/(N — 1)2,

The first and second order moments for Bhattacharyya distdmicesqual
covariance matrices are easily deduced from the reslitsve The simulated
experimentgpresented in thiollowing sectioncorrespondvith the presentedheoretical
values for thdirst and second moments Bhattacharyya distancndfor Hotelling 6 s
T2 with high precisiorfor the IC stateDue to the transition phase explaireatlier, the
statistics of the OC state do not converge to the expected values unless we consider an
extended run length after the first alarsnsignalled Thus we are notinteresed in
confirming these asymptotic results for the stationary OC statedberin inspecing

statisti@l behaviouiin the transition phaseith fixed run lengths

2.2 An alternative confidencecontrol chart

Based on the theoretical results presemdte previous subsection, we propose
a different look at process monitoring. Without actually modifying the contraitc
performances, one coutdansfom the statisticalraw distances antheir respectiven-
control boundariemto probability valuesFirst, if there is no special reason to weight
the in and outof-control processs differently, the processes are equally weighted in

Equation (6) thus reducing the upper bound on thpe | error toexp (—u(1/2)). If

different weights foithe processsare utiised theresultwill be a scale modificatioon

the statistic valuewhile still presering the 01 domain.
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Observe that when the process is actuallgantrol, eitherthe estimatedmean
vector orthe individual observations mustot be significanty differert from thein-

controlstandarcerror levels Thisfact leadsto an upper bound &f that iscloseto one

becausehein-control andcurrent processare completely overlappe@hen the mean
vector shifts from the in to the outof-control statethe upperboundon =; decreases
indicaing less overla@mmongthe processesiowever if the complementary probability
is taken, itindicatesan upper boundor the confidencelevel, which is close to zerq
meaning thathe currentprocesss notseparatérom the ircontrol state.

Based onsuch consideratiog a confidencecontrol chartutilising individual
observationss taken aghe standard level for the differemtaysof estimating the mean
vector This approach can beewed asthe MEWMA chart with A =1 or a sliding
window chart with unitary window sizeFor this reason, this control chartidentified
by the SW1 code qiding window of sizel). This control chart is aimple scale
transfor mat i olfwitl the us¢ mtBleattacHamyyglistance triggeringa

signal when
1 - &=
p, =1—exp [_ E(Xf_ MI}:]TEI} l(xr - MI})] > hy, (16)
whereh] is the incontrol upper limit to achieva desiredARL.

If the individual observed vector ishangedoy a mean vectott is possibleto
utilise the MEWMA or the SW schems for estimationof the vector Equation (3) is

utilised to estimatd. in the case of an MEWM#Aased control charFor all methods

utilising mean vector estimates instead of individual observations, the probability

control chart triggers an owtf-control signal as soon as
1 - &
p,=1 _EXP[ _E(Mr_MDjTEﬁltmr_ MD:]] = h*. (17)

whereh® is chosen to achieve a desired ARL

11



For all cases oEW schemes, only the observation vectorsgd@gshe current
window are weightednd the mean vector isvgn by
M, = Xizepa1 Wi Y, (18)
with ¥f_._, ., w =1 andk representinghe window sizelLet us now describe each
type of weight considered.
In the uniform SW (USW) approach the weights areequal for all the

observations inside the window of sizavith w given by

wl =

Fl

Jdi=t—k+1,..,t (29

The linear SW (LSW) approach gives more weight to the most recent

observatiorand deceases linearly theeightas the observation gets older stitét

= E;__{_?f{i} . (20)

Finally, in theexponentialSW (ESW) scheme, the weightor the observation

vectors inside thevindow aredistributedby

wE == (21)

DN

where ¢ is a smoothing factorbetween 0 and 1When ¢ =1, the exponentially
weightedwindow convergs to the uniformwindow. The smoothing factore utilised
for the exponenti®y weighted window is fixedo 0.7 as itdecaysbelow 0.5after two
steps.The calculation of individual weightfor the three proposed slidingindow

scheme®f size 4 isllustratedin Table 1 while the weightdor the windovs with size 2

are shownn Table 2.

| TABLE 11S AROUND HERE. |

| TABLE 21S AROUND HERE. |
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The control chart calibration procedure is performed in two steps to achieve an
ARL( = 200 for all control charts. The first step adfusie linear regression models in

the formd? = a + b =In (ARL). This procedure gives an approximate first estimate of

in-control thresholds for each chart. The second step in the calibration procedure
iteratively adjusts the threshold by interpolation. The nsattion illustrates the
functionality of the proposed control chart and presents analysis of the comparative

experiments.

3. Results and discussion

The first part of the experimenompareHo t e | T? and thés¥/1 control chart
which performs acaletras f or mat i o n dsftancedFmyure H(a) shong thes
signalpattern for tle case of no change in the mean veétioat is,d = 0), while Figures
1-(b) and1-(c) shift the mean vectgrocess at time= 201to the distanced = 3 andd
= 6, respectiely. In therespectivescattermlots illustrated in Figurs 1-(d), 1-(e) and1-
(f), the outof-control observation vectorare markedwith light red dots while the in
control vectorsare marked withdark black dots In Figure 1, he vertical lins in the
middle of the chart delimithe change pointThe horizontal dashed lisare the in
control thresholds for the paefined ARl = 200. Given a probability value, the in

control upper limit forthe SW1 charis h%,, = 0.7362 (73,2%). The corresponding

in-control noncentral distance that holdsforan ARL 200 i n t Feontidlot el | i n

chart isd = 3.265, which is a scale transformatiorhipf;, .

| FIGURE 1 1S AROUND HERE. |

Noteworthy in Figure Z(c), is the fact that most of the owbf-control
observation vectors do not overlapth the in-control region, resulting in probability
values converging to 1. Thisesult indicates thatwhen considering individual

observation vectorghe confidence level converges to 1 when the procedsemt

13



overlg . This pattern do e’statstcbecause habouedists Hot el |
there for the maximum values, which makesafutontrol signals difficult tonterpret
A more detailed summary of the raw distances and their equivalent confidence

levelsare given in Table 3, wher#? andp arethe average values and Sd(@yethe

standard deviatiacomputed oved 00000 sample replications of size 10. Netthat

the simulated experiments confirm with high precision the paraneters t he Hot el | i |
T? statisticfor the IC stateife., d = 0). As expected, the ARL for both chaitsthe

same, which indicatesh at t he tr ansf ofimaprobabiltiesausing Hot el |
the Bhattacharyya distancmes notactually modify ARL peformance.As indicated

earlier, ford > 0 the estimates may not converge to the expected values due to the
transition phase affecting the first 10 observations after the process has chented.

ARL is a function ofd, a fixed run length is affected thfentlyfor distinct values ofl.

| TABLE 31S AROUND HERE. |

Figure 2(a) is composeaf four sets of control chartand their respective two
dimensional scatter plotge showrin Figure 2(b). The MEWMAbased control chast
utilisea =such that they perfornaenticallyto the SW1 control charata maximum

standard confidence level to protect thebgll incontrol process region.

| FIGURE 2 IS AROUND HERE. |

As evident inFigure 2, both USW and ESW control charts with sliding wimsl

of size 2 (SW2) performs identically becayse 1. Also noticeables thereduction in

the incontrol limits of the USW and ESW charts in Figure 2, which is

hizsw = hzsw = 04811 (d = 2.2908). This reduction indicates that the chart besome

sensitiveto small changes in the mean vector, no matter the individual distances. The

in-control limit for the LSW chart with SW2 schemehis,,,, = 0.5166 (d = 2.4115).

14



Figure 3 shows the reducing effect on the confidence levels for all control charts.
The MEWMA-bas d contr ol chart wi t h & = 0.7
transformed ircontrol limit is hjgwma > = 0.5086 (d = 2.3842). For the SW2 chart
with the ESW schemeén Figure 3 the estimated threshold igzg,, = 0.4901 (d =

2.3212).

| FIGURE 3 IS AROUND HERE. |

Despit the fact that the control charts become more sensitive to small shifts in
the mean vector, a drawback of the USW, LSW, and ESW schemes withisSSW2
noteworthy, a drawbacthat allows some extremelearly outof-control valuesto be
considered ircontrol. In the same manner, many vectors that could be considered in
control are markedvith out-of-control dots. This happens because the observation
vector receivesat the instanti 1, too much weight in the SW approach for the current
observation vectoto compensate (see Table 2). The MEWMAsed control chart
seems to avoid this problemroviding a better differentiation between the amd out
of-control vectors. Suchehaviouris becauséhe MEWMA scheme accumulates all the
past information in the currentean vectqgrwhile the SW scheme does not.

More detailed information concerning the mean and standard deviation of the
transformed statistefor all control charts are given in Table 4 andNStably, thereis a
reduction in the ircontrol limits for smdl distances. That reductioprovidesinsight
into the optimum distance that can be efficiently detected for each chart configuration,

which is belowd = 3 for the MEWMA.7 and SW2 charts.

| TABLE 41S AROUND HERE. |

| TABLE 5IS AROUND HERE. |

The ARL compariens between the MEWMA.7, MEWMA.4, SW2 and SW4

control charts are given in Tables ®bserving Table 6, although the SW2 control

15



chars perform better than the SW1 chart (Table 1) and similarly to the MEWMA.7
chart for small shiftsaninertial effect is vible for distances larger thar= 3.0 in the
case of SW schemes. Ordering the schemes frone#is¢to the most sensitive with
respect to the inertial effect, the MEWMA chart performs better, followed by the USW,

ESW and LSW chatrts.

| TABLE 61S AROUND HERE. |

When the window size increases to 4 (SW4 control charts), the MEMWa4&d
control chart has thee par ameter d e cr e arsl &d confiparisom O .
purposs, is called MEWMA.4. Figure 4 illustrates tletandard patterns for tHeur
confidence control charts for a shift of magnitutte 3. The respective inontrol limits
are very close to eaatther, and all of them lead to completely separable processes,

which are hjgyua = 02747 (d = 1.6028), hjqy =0.2677 (d = 1.5789),
hiey = 03190 (d = 1.7530) anchig, = 0.3082 (d = 1.7168).Table 5providesthe

summary statistics for the MEWMA.4 and SW4 actes.

| FIGURE 4 IS AROUND HERE. |

Figure 5(a) showsan ARL comparison of all control charts, while Figur€b®
usesthe natural logarithm to amplify the differences. Splitting the comparison into two
groups, Figure 4a) compareshe SW1, MEWMA.7 and SW2ontrol charts, while
Figure 6(b) compareshe SW1, MEWMA.4 and SW4 control charl¢oticeablein the

figuresis the high degree of inertia effect produced by the SW schemes.

[ FIGURE 5 IS AROUND HERE. |

The second set of control charts in Figurbbcompares the SW1, MEWMA .4
and SW4 charts. Although these control charts perform better for shifts detavO,
they have a higher degree of inertial effect than the SW2 charts for shifts indwhith

Again, the USW4 has the best performance, which is eoale to the MEWMA.4

16



chart. With respect to robustness against the inertia impact of large shifts, the USW
approach seems to be the most effective scheme. The LSW and ESW schemes perform
worse in both cases when compared to the USW scheme for large \8Hifts the
differences between the SW schemes for small shifts are not evident in the SW2 charts,
the LSW4 and ESW4 charts perform worse than the USW4 chart for small shifts as

well.

[ FIGURE 6 1S AROUND HERE. |

Figure 7 presents comparisons between thenmedues produced by the
MEWMA c¢chart varying the & parameter from 1
values for the sliding windows chart with window sizes 1, 2, 4, 6, 8, 10, 12, 14, 16 and
20. This experiment makes it possible to choose the appmpiiatlow size that would
present expected performance similar to a
shown in the above experiments, this expected equivalent performance is limited to an
ideal range of noncentral values, as the sliding windows tiemesent considerably

more inertia from large shifts than the MEWMA method.

| FIGURE 7 IS AROUND HERE. |

For example, the mean valemt he MEWMA <chart cloggtot h & =
15%, which is similar to the sl i didzethgt wi ndoyv
presersg theapproximate mean value is 4. Thus, if a specific magnitude of mean shift in
t he pr ocess ontleedMEWMAechart,do achieve similar performance with
sliding window schemes one should select a window of size 10 or 1Zydieg®n the
sliding window schemeAdditionally, not e t hat the G4 parameter
weighted window was fixeat 0.7 for all window sizesbut it can be reduced as the

window size increases to compendatedifferences.

17



A detailed comparisometween the MEWMAbasedconfidencecontrol chart
baselines (mean values) and standard deviations for thentrol processwi t h @&
varying from 1 to 0.1 by 0.1 unijtss illustrated in Figure 8. These values agree
completelywith the expected ones. To #yse the oubf-control behaviour of the
proposed statistic, the mean vector is shjfteth d varying in the 0.5 range by 0.5
units. This information on the first and second order moments of the proposed statistic

alsoprovidesvalid informative suppdarfor the decision maker

[ FIGURE 8 IS AROUND HERE. |

From the results presented in Figu@ and 10 an interesting oubf-control
statistics patterms noticeablefor the confidence chart in the transition period that is
fixed to 20 observations. In Figp9 ()t he a&a0s are positioned abo
and the window sizes for the SW schemes are specified in the horizontal axis. Note that
as the baseline decreases with the smoothi

maximum point in Figure 9(b) that is highly affected by the inertial period of 20

observations anthatdoes not converge to the expstralue.

[ FIGURE 9 IS AROUND HERE. |

| FIGURE 10 IS AROUND HERE. |

We observe that the mean value and standard deviation of the stationafy out
control state only makes sense if the researcher waits for the convergence after the
inertial period. Thatvaiting generallydoesnot take placefor the problems found in
SPC because the monitoring stage is stopped after the first signal occurrence, and the
out-of-control process stalshtion is not verified in practice.

To illustrate a common decision problem that occurs in many applicatakes,
the example given in Figure 10. A researcher is monitoring a bivariate Gaussian process

without any prior inbrmation about the direction of chan@édwus the nordirectional

18



MEWMA control can be selected with sliding window schemes to also perfoiimeon
pattern identification. Additionally, as the researcher has no prior information about the
magnitude of theshift, a control chart to monitdarge shifts can be configured at the
costof not detecting the change if itassmall change Otherwise, the control chart can
be configured to detect a small shift, but at the cost of an inertial delay if the actiual shi
occurring in the process iarge

In a simulated scenarisuch ashe example in Figure 1@he thresholdof all

proposedcontrol charts ar@mominally specifiedto detect a small shift uiging d = 1,

1

which given in probability igh* = 1 —exp(—() * 1*) = 0.1175. In Figure 10 (a)

showing an extended run length of size 400 for theommtrol processhe charts are not
exactly calibrated to the same ARL, but as shown in Figuileey areexpectedo show
similar performance for small shifts in the mean vechorfact the ESW scheme is
clearly configured to detect smaller changes than all other concurrent schygrees
the excessive number of false alarshewn in Figure 10 (a)ln Figurel0 (b) and (c)a
short run length of size 40 is monitored whwio types of stits occur at positiort =
21

As all the control chartare configured to detect smadhifts they perforned
similarly in detectinga shift of size 1However,when alarge shift of sized = 7
occurred, as showin Figure 10 ¢), the ESW scheme cleanberformed thevorst. Such
behaviourin the SW schemes can be related to nhenberof observations thaare
needed tdulfil the actual estimate of the mean vector to comperfeathe information
history accumulated by the MEWMA scheme.

It is interestingto notethat while the expected value for the proposed statistic

whend= 7 . 0 a pathbegiverbyO . 1
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E[P|M1 = (?,ﬂ]) = 5(1_ exp (_%[d2])|mi = (?Jﬂ])

=1— exp(—E (%dﬂmi = (?,ﬂ)))

=1- exp(—%g[dﬂmi = (?,ﬂ])) =1- exp(—%(n + M}Mlj)

=1- exp(—%(2+ (7 0) [;])) =1— exp(—%[2+ 49])

51
=1—exp (— E) = (0.9983,

the observed value of the first 20 vectors ir0B0 Monte Carlo simulations converges
to 0.7886. This reflects the high inertial effect suffeirethe control charts configured

for small change detection when the actual change happening in the proaess is

4. Conclusion

In this paper,we discuss an alternative wayf monitoring Gaussian mean
vectorsthroughthe use of an upper bouridr the confdence that the process is in
control. Insteacdbf monitoring the noncentrality parameter, we suggest the use of the
Bhattacharyya distance and its relationship with the upper bouhdthe
misclassification error. While theaditional distance dfi o t e Is T? has godnaximum
values, the proposed confidence control chart based on probabilities for individual
observation vectors manifest useful distinction between processes in t#ier@nge. In
this case, when the oeof-control process lm®mescompletely separablefrom (not
overlappedwith) the incontrol process, the proposed statistic cogeseto 1, not going
to infinity.

Additionally, we show that the probability control chart for individual
observation vectors can be extended to more generas, ¢esemonitoring of small
shifts throughthe use of MEWMAbased control charts and control charts with sliding

window schemes. In the same manmasrthe MEWMA method, instead of using
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individual observation vectors, the sliding window approaches are commsadyta
estimate the actual mean vector for different purposes, includirigherpattern
recognition. We show the equivalence in performance measured by the ARL among the
MEWMA -based control charts and sliding window schemes for specific parameters.

While this equivalence holds for small shifts in the mean vector, the sliding
window approach proves to be more susceptible to the inertial effect for large shifts than
the MEWMA-based scheme. Indeed, in the same manner that a decrease in the
wei ght i nigthefMEWMAchartelps in identifyingsmall shifts, an increase in
the sliding window size corresponds riwre effectivedetection of smaller shifts but
with a greater inertial effect for large shifts than the MEWAdi#sed chart.

Future work on this topiincludes the monitoring of the covariance matrix of a
Gaussian proceghiroughthe use of probabilitpased control charts, as well global
process monitoring, i.e., the joint monitoring of the mean vector and covariance matrix
of a multivariate Gaussigsrocess.
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Table 1: Weights computation for sliding window schemes with size 4 (SW4)

Window schemeWi ndow po t3 t-2 t-1 t 7
Uniform scheme 1/4 1/4 1/4 1/4 4/4
Uniform weights 0.250 0.250 0.250 0.250 1
Linear scheme 1/4 2/14 3/4 4/4 10/4
Linear weights 0.100 0.200 0.300 0.400 1
Exponential scheme 07* 073 0.7° 0.71 1.77
Exponential weights 0.135 0.193 0.276 0.395 1

Table 2: Weights for sliding window schemes with size 2 (SW2)

Window schemeWi ndow po t-1 t

Uniform 0.500 0.500
Linear 0.333 0.667
Exponential 0.412 0.588

Tabl e 3: Summar 2andSW1 Btatisties lwithiARLgcongparigon

d d2 sd(d*)  ARL p(%) sd(p)(%) ARL
0.0 2.000 1.850  200.6 20.00 15.74  200.6
0.006 0.006 0.634 0.001 0.000  0.634
0.5 2.251 2.070 118.8 21.97 16.93 117.7
0.007 0.007  0.376 0.001 0.001  0.372

1.0 3.001 2.642  43.1 27.62 19.57 43.1
0.009 0.008  0.136 0.001 0.001  0.136

1.5 4.252 3.407  16.0 36.13 21.96 16.0
0.013 0.011  0.051 0.001 0.001  0.051

2.0 6.003 4.263 7.0 46.39 22.98 7.0
0.019 0.013 0022 0.001 0.001  0.022

25 8.253 5.163 3.6 57.19 22.30 3.6
0.026 0.016 0.011 0.002 0.001  0.011

3.0 11.004 6.086 2.2 67.49 20.13 2.2
0.035 0.019  0.007 0.002 0.001  0.007

3.5 14.270 7.039 1.5 76.51 16.97 1.5
0.143 0.070  0.005 0.002 0.001  0.005

4.0 18.021 7.987 1.2 83.86 13.39 1.2
0.180 0.080 0.004 0.003 0.000  0.004

h(ARL=200)  10.66 73.62
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Table 4: Summary statistics for the MEWMA.7 and SW2 control charts

MEWMA.7 USW2 LSW2 ESW?2

d P(%) Sd(p)(%) (%) Sd(p)(%) P(%) Sd(p)(%) (%) Sd(p)(%)

0.0 11.84 9.8 11.10 9.05 12.18 10.00 1140 9.32
0.08 0.07 0.08 0.06 0.09 0.07 0.08 0.07
0.5 14.07 11.25 13.36 1048 1435 1139 13.63 10.74
0.10 0.08 0.09 0.07 0.10 0.08 0.10 0.08
1.0 20.39 14.22 19.78 13.54 20.52 1444 19.94 1381
0.14 0.10 0.14 0.10 0.15 0.10 0.14 0.10
15 29.87 1692 29.36 16.44 29.74 17.45 29.38 16.78
0.21 0.12 0.21 0.12 0.21 0.12 0.21 0.12
2.0 41.22 18.36 40.77 18.29 40.71 19.60 40.61 18.82
0.29 0.13 0.29 0.13 0.29 0.14 0.29 0.13
2.5 53.09 18.33 52.61 1895 52.09 20.75 5224 19.79
0.38 0.13 0.37 0.13 0.37 0.15 0.37 0.14
3.0 64.31 17.05 63.67 18.63 62.72 21.12 63.11 19.90
0.45 0.12 0.45 0.13 0.44 0.15 0.45 0.14
3.5 74.06 1494 73.19 1765 7186 20.99 7245 19.42
0.52 0.11 0.52 0.12 0.51 0.15 0.51 0.14
4.0 81.94 1244 80.80 16.29 79.14 2059 79.90 18.a
0.58 0.09 0.57 0.12 0.56 0.15 0.56 0.13

h(ARL¢=200) 50.86 48.11 51.66 49.01
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Table 5: Summary statistics for the MEWMA.4 and SW4 control charts

MEWMA 4 Usw4 LSwW4 ESW4
d P(%) Sd(p)(%) P(%) Sd(p)(%) P(%) Sd(p)(%) P(%) Sd(p)(%)
0.0 576 472 545 428 658 529 632 509
0.04 003 004 003 005 004 004 0.04
0.5 784 594 761 565 864 6.64 839 6.44

0.06 0.04 0.05 0.04 0.06 0.05 0.06 0.05
1.0 13.77 8.68 13.73 8.84 1449 9.82 1424 9.64
0.10 0.06 0.10 0.06 0.10 0.07 0.10 0.07
15 22.72 11.73 2288 12.67 23.25 13.62 2299 13.51
0.16 0.08 0.16 0.09 0.16 0.10 0.16 0.10
2.0 33.51 1453 33.76 16.53 33.68 17.36 33.42 17.40
0.24 0.10 0.24 0.12 0.24 0.12 0.24 0.12
2.5 4492 16.78 45.04 20.01 4455 20.64 4426 20.88
0.32 0.12 0.32 0.14 0.32 0.15 0.31 0.15
3.0 55.88 18.34 5562 2280 5481 23.16 54.46 23.62
0.40 0.13 0.39 0.16 0.39 0.16 0.39 0.17
3.5 65.63 19.13 64.78 24.73 63.76 24.76 63.35 25.45
0.46 0.14 0.46 0.17 0.45 0.18 0.45 0.18
4.0 73.77 19.19 7221 2577 7111 2543 70.63 26.33
0.52 0.14 0.51 0.18 0.50 0.18 0.50 0.19

h(ARLo=200) 27.47 26.77 31.90 30.82
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Table 6: ARL comparison between MEWMA and SW control charts

d EWMA.7 USW2 LSW2 ESwW2 EWMA4 USW4 LSW4 ESW4
0.0 198.9 202.7 201.8 2019 199.3 199.0 199.1 200.7
4.45 4.53 4.51 451 4.46 4.45 4.45 4.49
0.5 83.2 82.0 84.6 81.0 52.6 54.4 61.1 59.2
0.83 0.82 0.85 0.81 0.53 0.54 0.61 0.59
1.0 22.7 22.2 23.7 22.4 12.8 13.2 154 14.8
0.23 0.22 0.24 0.22 0.13 0.13 0.15 0.15
15 8.4 8.0 8.6 8.1 5.6 5.7 6.7 6.5
0.08 0.08 0.09 0.08 0.06 0.06 0.07 0.06
20 4.1 3.9 4.2 4.0 3.4 3.7 4.3 4.2
0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04
2.5 2.6 2.5 2.8 2.6 2.5 3.0 3.5 3.5
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
3.0 1.9 2.0 2.2 2.1 2.0 2.6 3.0 3.0
0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03
3.5 15 1.8 2.0 1.9 1.7 2.3 2.6 2.6
0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03
4.0 1.3 1.6 1.9 1.8 1.5 2.1 2.2 2.3
0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02
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