
Bioestatística F

Comparação de Duas Médias

Enrico A. Colosimo
Depto. Estatística – UFMG
http://www.est.ufmg.br/~enricoc/

Tabela t-Student

Distribuição t-Student: Valores de t_c tais que $P(-t_c \le t \le t_c) = 1-p$

	Distribuição t -Student: valores de t_c tais que $P(-t_c \le t \le t_c) = 1-\boldsymbol{p}$											-t	* t					
ſ		p->90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	2%	1%	0,2%	0,1%		
	1	0.158	0.325	0.510	0.727	1.000	1.376	1.963	3.078	6.314	12.706	15.894	31.821	63.656	318.289	636.578	1	
	2	0.142	0.289	0.445	0.617	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	22.328	31.600	2	
	3	0.137	0.277	0.424	0.584	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	10.214	12.924	3	
	4	0.134	0.271	0.414	0.569	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	7.173	8.610	4	
	5	0.132	0.267	0.408	0.559	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	5.894	6.869	5	
	6	0.131	0.265	0.404	0.553	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	5.208	5.959	6	
	7	0.130	0.263	0.402	0.549	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.785	5.408	7	
	8	0.130	0.262	0.399	0.546	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	4.501	5.041	8	
	9	0.129	0.261	0.398	0.543	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	4.297	4.781	9	
	10	0.129	0.260	0.397	0.542	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	4.144	4.587	10	
	11	0.129	0.260	0.396	0.540	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	4.025	4.437	11	
	12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.930	4.318	12	
	13	0.128	0.259	0.394	0.538	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.852	4.221	13	
	14	0.128	0.258	0.393	0.537	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.787	4.140	14	
<u>e</u>	15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.733	4.073	15	
gac	16	0.128	0.258	0.392	0.535	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.686	4.015	16	
ē	17	0.128	0.257	0.392	0.534	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.646	3.965	17	
de liberdade	18	0.127	0.257	0.392	0.534	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.610	3.922	18	
de	19	0.127	0.257	0.391	0.533	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.579	3.883	19	
S	20	0.127	0.257	0.391	0.533	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.552	3.850	20	
Graus	21	0.127	0.257	0.391	0.532	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.527	3.819	21	
ဗ	22	0.127	0.256	0.390	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.505	3.792	22	
	23	0.127	0.256	0.390	0.532	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.485	3.768	23	
	24	0.127	0.256	0.390	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.467	3.745	24	
	25	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.450	3.725	25	
	26	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.435	3.707	26	
	27	0.127	0.256	0.389	0.531	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.421	3.689	27	
	28	0.127	0.256	0.389	0.530	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.408	3.674	28	
	29	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.396	3.660	29	
	30	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.385	3.646	30	
[35	0.127	0.255	0.388	0.529	0.682	0.852	1.052	1.306	1.690	2.030	2.133	2.438	2.724	3.340	3.591	35	
	40	0.126	0.255	0.388	0.529	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	3.307	3.551	40	
	50	0.126	0.255	0.388	0.528	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	3.261	3.496	50	-
	60	0.126	0.254	0.387	0.527	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	3.232	3.460	60	
	120	0.126	0.254	0.386	0.526	0.677	0.845	1.041	1.289	1.658	1.980	2.076	2.358	2.617	3.160	3.373	120	
	inf	0.126	0.253	0.385	0.524	0.675	0.842	1.036	1.282	1.645	1.960	2.054	2.327	2.576	3.091	3.291	inf	

Distribuição Normal: Valores de p tais que $P(0 \le Z \le z_c) = p$

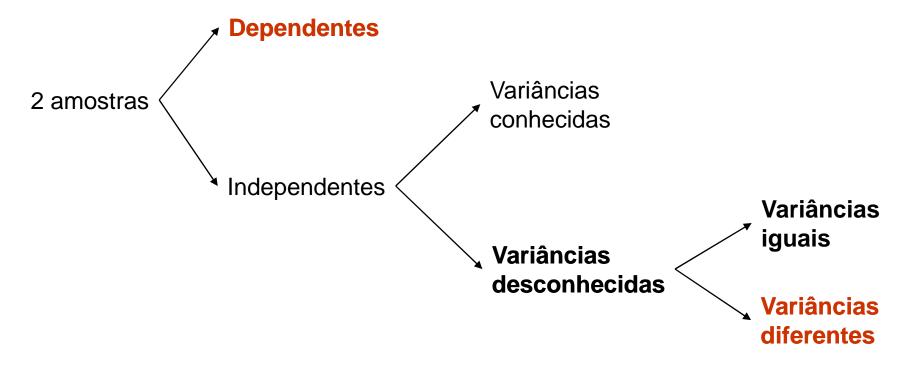
Segunda decimal de z_c

-	Segunda decimal de Z _c													
_		0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			
	0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359	0.0		
	0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753	0.1		
	0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141	0.2		
	0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517	0.3		
	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879	0.4		
	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224	0.5		
	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549	0.6		
	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852	0.7		
	8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133	8.0		
	0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389	0.9		
	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621	1.0		
	1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830	1.1		
	1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015	1.2		
၁ ႗	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177	1.3		
ָטַ בַּ	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319	1.4		
מפכווומו מפ	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441	1.5		
ĘΙ	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545	1.6		
ž L	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633	1.7		
	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706	1.8		
פֿ	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767	1.9		
מושות	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817	2.0		
ט [2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857	2.1		
ס	2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890	2.2		
מונם ווונוומ	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916	2.3		
= b	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936	2.4		
<u> </u>	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952	2.5		
- [2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964	2.6		
	2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974	2.7		
	2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981	2.8		
	2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986	2.9		
	3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990	3.0		
	3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993	3.1		
	3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995	3.2		
	3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997	3.3		
	3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998	3.4		
	3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	3.5		
J	3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	3.6		
ſ	3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	3.7		
ſ	3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	3.8		
	3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	3.9		

Parte inteira e primeira decimal de z $_{\rm c}$

Comparação de duas médias populacionais

A hipótese nula (H₀) de que as médias populacionais são iguais pode ser escrita da seguinte forma:


$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$
 $H_a: \mu_1 - \mu_2 \neq 0$

$$\mu_D = \mu_1 - \mu_2 \qquad \qquad H_0: \mu_D = 0$$

$$H_a: \mu_D \neq 0$$

Valores Amostrais

Estamos interessados em comparar duas populações com relação às suas médias. Os dados amostrais podem ser independentes ou dependentes. Cada caso norteia a formulação do teste.

Noções de Dependência e Independência de amostras

- Vamos contextualizar amostras dependentes e independentes da seguinte forma:
 - Amostras Independentes: quando os elementos das amostras provêm de indivíduos distintos (diferentes)
 - Amostras Dependentes: quando os elementos das amostras provêm dos mesmos indivíduos.

Amostras dependentes (teste t-pareado)

Pg. 312, ex. 1: Para se avaliar o nível de tensão ocasionado por exames escolares, doze alunos foram escolhidos e sua pulsação medida antes e depois do exame. Faça um teste, com nível de significância de 1% para verificar se existe maior tensão (isto é, maior pulsação) antes da realização dos exames. Indique as suposições necessárias.

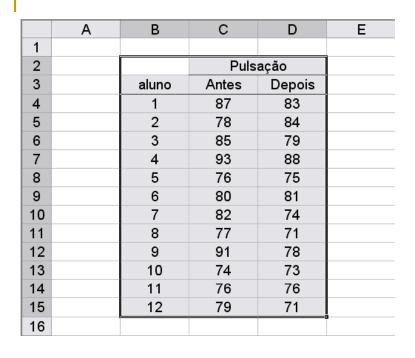
Instante da						Estu	dante							
medição	1	2	3	4	5	6	7	8	9	10	11	12	média	desvio
Antes	87	78	85	93	76	80	82	77	91	74	76	79	81.5	6.20
Depois	83	84	79	88	75	81	74	71	78	73	76	71	77.75	5.41
A - D	4	-6	6	5	1	-1	8	6	13	1	0	8	3.75	5.05

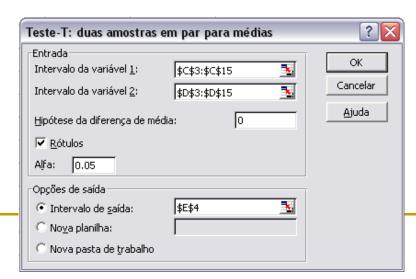
Teste t-pareado

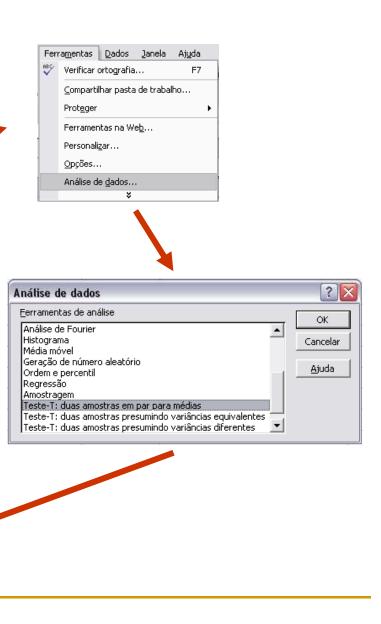
No caso de amostras pareadas, em cada unidade amostral (indivíduo), é realizado duas medições da característica de interesse. Em geral, essas observações correspondem a medidas tomadas antes (Xi) e após (Yi) à intervenção. O teste então se reduz ao de uma única amostra, a da diferença entre observações.

$$D_{i} = Y_{i} - X_{i}$$

$$D_{i} \sim N(\mu_{D}, \sigma_{D}^{2})$$


$$H_{0}: \mu_{D} = 0$$


$$H_{a}: \mu_{D} \neq 0$$


$$S_{D}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (D_{i} - \overline{D})^{2}$$

$$T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}$$

aula12_exemplo01.xls

aula12_exemplo01.xls

Teste-t: duas amostras em par para médias

	Antes	Depois
Média	81.5	77.75
Variância	38.45455	29.29545
Observações	12	12
Correlação de Pearson	0.629733	
Hipótese da diferença de n	0	
gl	11	
Stat t	2.573626	
P(T<=t) uni-caudal	0.012941	
t crítico uni-caudal	1.795884	
P(T<=t) bi-caudal	0.025883	
t crítico bi-caudal	2.200986	

Pg. 344, exercício 10

Num programa de diminuição da poluição sonora em cidades grandes, realizou-se uma campanha educativa durante 2 meses. Verifique se a campanha surtiu efeito ao nível de significância de 4%.

_			-	
Dant	00	$d \sim 1$	いにつ	$\Delta \Delta \Delta$
Pont	.US 1	ua ı	Ulu	aut

	1	2	3	4	5	6	7	8	9	10	média	desvio
Antes	23	44	56	34	25	67	21	23	73	58	42.4	19.88
Depois	21	30	45	35	26	50	23	22	57	46	35.5	13.09
A - D	2	14	11	-1	-1	17	-2	1	16	12	6.9	7.75

Comparação de Proporções

$$H_0: p_1 = p_2$$

$$H_a: p_1 \neq p_2$$

$$\begin{array}{c} H_0: p_1 = p_2 \\ H_a: p_1 \neq p_2 \end{array} \qquad \begin{array}{c} \text{Sob Ho} \\ \end{array} \qquad \hat{p}_p = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} \end{array}$$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p (1 - \hat{p}_p) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0, 1)$$

Introdução à Bioestatística

Comparação de Duas Médias Amostras Independentes

Enrico A. Colosimo
Depto. Estatística – UFMG
http://www.est.ufmg.br/~enricoc/

Comparação de duas médias

 H_0 : as médias populacionais são iguais

H_a: as médias populacionais não são iguais

 $H_0: \mu_1 = \mu_2$

 $H_a: \mu_1 \neq \mu_2$

 $H_0: \mu_1 - \mu_2 = 0$

 $H_a: \mu_1 - \mu_2 \neq 0$

 $H_0: \quad \mu_D = 0$ $H_a: \quad \mu_D \neq 0$

 $(\overline{D} \ ou \ \overline{X}_D) \sim N(\mu_D, \sigma_D^2)$ Este é o caso genérico

Amostras Independentes, variâncias iguais e desconhecidas

$$\overline{X}_1 - \overline{X}_2 \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$

$$H_0: \mu_1 = \mu_2$$

p/ variâncias iguais:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2[(\frac{1}{n_1} + \frac{1}{n_2})]}} \qquad \frac{\overline{D} - \mu_D}{\sqrt{S_p^2(1/n_1 + 1/n_2)}} \sim t_{(n_1 + n_2 - 2)}$$

Amostras Independentes Variâncias iguais e desconhecidas

$$s_p^2 = \frac{\sum_{i=1}^{n_1} (x_{i1} - \overline{x}_1)^2 + \sum_{j=1}^{n_2} (x_{j2} - \overline{x}_2)^2}{n_1 + n_2 - 2}$$

ou

$$s_p^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

$$gl = n_1 + n_2 - 2$$

Pg. 341: exercício 3

O desempenho em duas classes de Estatística está sendo comparado através do resultados dos dez melhores alunos de cada turma. A partir dos dados é possível dizer que as duas classes têm o mesmo desempenho? Utilize α = 2%.

	Notas													
Classe	1	2	3	4	5	6	7	8	9	10	Média	Desvio		
I	8.5	7.5	7	6.5	8.5	9.5	9	9	8.5	10	8.4	1.101		
II	7	7.5	8.5	9.5	9	8.5	8	8.5	9.5	9.5	8.55	0.864		
I - II	1.5	0.0	-1.5	-3.0	-0.5	1.0	1.0	0.5	-1.0	0.5	-0.15	1.375		
											ν	17.04		

Amostras Independentes com Variâncias Desconhecidas e Diferentes

$$\overline{D} = \overline{X}_1 - \overline{X}_2$$

$$\hat{\sigma}_{D}^{2} = \frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

Graus de liberdade

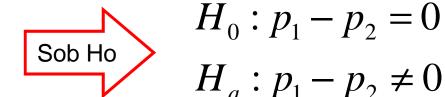
$$FR_{H_o}(\overline{X} \mid H_0) = \mu_{H_0} \pm t_{\alpha/2,(\nu)} \times \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Pg. 313: exercício 5

 Para comparar as médias de duas populações Normais, amostras aleatórias foram obtidas.
 Sabe-se que as variância populacionais são diferentes, sendo seus valores desconhecidos.
 O que pode ser dito a respeito das médias das populações, com α = 0,05.

Amostra I	7	9	3	8	11	5	9
Amostra II	2	7	5	15	9	16	8

Pg. 228: exercício 15 S&S.


- Dezenove crianças com diagnóstico de AIDS foram separadas em dois grupos de acordo com a susceptibilidade à droga. Considera-se susceptível quando o vírus HIV é inibido por concentração de zidovudina (AZT) menor que 0,1 μg/L e resistente quando a inibição exige nível acima de 10 μg/L. A duração em meses da terapia com AZT relatada por Ogino (1993) é mostrada a seguir:
 - Existe diferença significativa entre os dois grupos no que diz respeito ao tempo de terapia com AZT? formule a hipótese de interesse e teste-a ao nível de significância de 5%. Calcule o valor-p e interprete-o.

Resistentes
(n=9)
12
14
5
14
15
17
13
13
12

Comparação de Proporções

$$H_0: p_1 = p_2$$

$$H_a: p_1 \neq p_2$$

$$H_0: p_1 - p_2 = 0$$

$$H_a: p_1 - p_2 \neq 0$$

$$\hat{p}_D = \hat{p}_1 - \hat{p}_2$$

$$\hat{p}_D = \hat{p}_1 - \hat{p}_2 \qquad \hat{p}_p = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{c_1 + c_2}{n_1 + n_2}$$

$$FR_{H_o}(\overline{X} \mid H_0) = \mu_{H_0} \pm Z_{\frac{\gamma}{2}} \times \sqrt{\hat{p}_p(1-\hat{p}_p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Pg. 341: exercício 1

A sequência de operações executadas por um operário para realizar uma certa tarefa está sendo estudada. Para tanto, 9 operários foram sorteados e mediu-se o tempo necessário, em minutos, para que cada um realizasse a tarefa, com os dois tipos de sequências. Suponha e o modelo Normal é adequado e baseando-se nos dados fornecidos, você diria que houve diminuição no tempo médio para a realização da tarefa? Use α = 5%.

Operário	1	2	3	4	5	6	7	8	9
Atual	24	25	27	22	23	28	26	28	29
Nova	21	23	28	27	24	26	25	22	23

Pg. 341: exercício 3

O desempenho em duas classes de Estatística está sendo comparado através do resultados dos dez melhores alunos de cada turma. A partir dos dados é possível dizer que as duas classes têm o mesmo desempenho? Utilize α = 2%.

Classe		Notas											
I	8,5	7,5	7,0	6,5	8,5	9,5	9,0	9,0	8,5	10,0			
П	7,0	7,5	8,5	9,5	9,0	8,5	8,0	8,5	9,5	9,5			

Pg. 345: exercício 12

Deseja-se comparar o tempo de recuperação pós-operatória para duas técnicas cirúrgicas. Pacientes operados, segundo cada uma das técnicas, foram selecionado aleatoriamente e seu tempo de recuperação, em dias, registrado. Todos os pacientes apresentavam o mesmo estado de saúde antes da cirurgia. Verifique se a Técnica 1 é mais eficiente com relação ao tempo médio de recuperação. Use α = 5%.

Técnica 1	4	4	5	6	6
Técnica 2	6	6	7	7	8

Pg. 346: exercício 17

Pacientes resolveram processar a clínica de emagrecimento Linha Fina sob a alegação de que o tratamento empregado não contribuiu para a diminuição do peso. O advogado de defesa contratou um estatístico que selecionou, aleatoriamente, 10 prontuários que continham informação a respeito dos pesos dos pacientes, tomados no início e no final do tratamento. Os dados obtidos foram (em kg). Verifique se a alegação é verdadeira, use α = 5%.

		Número do paciente									
	1	2	3	4	5	6	7	8	9	10	
Início	80	104	94	62	70	80	102	58	78	84	
Final	78	95	87	60	71	82	94	65	78	80	

Tabela 9.1 (pg 309, Magalhães & de Lima)

Amostras Pareadas

$$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n} \qquad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2$$

$$\frac{\overline{D} - \mu_D}{\sqrt{S_D^2/n}} \sim t_{(n-1)}$$

Amostras Independentes – Variâncias desconhecidas e iguais

$$\overline{D} = \overline{X} - \overline{Y}$$
 $S_c^2 = \frac{(n_1 - 1) \cdot S_X^2 + (n_2 - 1) \cdot S_Y^2}{(n_1 - 1) + (n_2 - 1)}$

$$-\frac{D-\mu_D}{\sqrt{S_c^2(1/n_1+1/n_2)}} \sim t_{(n_1+n_2-2)}$$

Amostras Independentes - Variâncias conhecidas

$$\overline{D} = \overline{X} - \overline{Y}$$
 $VAR(\overline{D}) = \sigma_X^2 / n_1 + \sigma_Y^2 / n_2$

$$\frac{\overline{D} - \mu_D}{\sqrt{\sigma_X^2/n_1 + \sigma_Y^2/n_2}} \sim N(0,1)$$

Amostras Independentes Variâncias desconhecidas e diferentes

$$\overline{D} = \overline{X} - \overline{Y} \qquad S_c^2 = \frac{(n_1 - 1) \cdot S_X^2 + (n_2 - 1) \cdot S_Y^2}{(n_1 - 1) + (n_2 - 1)} \qquad \overline{D} = \overline{X} - \overline{Y} \qquad \hat{\sigma}_{\overline{D}}^2 = S_X^2 / n_1 + S_Y^2 / n_2$$

$$\overline{D} - \mu_D \qquad \sim t_{(\nu)}$$

$$\nu = \frac{\left(S_X^2/n_1 + S_Y^2/n_2\right)^2}{\left(S_X^2/n_1\right)^2 + \frac{\left(S_Y^2/n_2\right)^2}{n_2 - 1}}$$